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Abstract

Sequential decision-making under uncertainty is a fundamental problem in arti-

ficial intelligence. Real-world environments rarely provide well-defined rewards

or complete information, and feedback is often qualitative, subjective, or in-

consistent. As AI systems are increasingly deployed in high-stakes domains

such as finance, autonomous driving, and human–robot interaction, it becomes

crucial to develop principled algorithms that can act reliably under uncertainty

and align with human intentions. However, existing reinforcement learning

(RL) paradigms, which lack explicit modeling of uncertainty, rely primarily on

expectation-based objectives and handcrafted rewards, leaving a substantial gap

between theoretical optimality and human-aligned behavior.

This dissertation addresses these challenges through two complementary

perspectives—distributional reinforcement learning (DistRL) and reinforcement

learning from human feedback (RLHF)—and unifies them under a common

theoretical lens of regret minimization. The central goal is to establish a reliable

foundation for learning human-aligned decision-making by interpreting the

probabilistic nature inherent in human feedback.

The first part revisits the exploration problem in DistRL. Existing approaches

based on “optimism under uncertainty” rely on estimates of return variance

but conflate epistemic and aleatoric uncertainties, which induces persistent

risk-seeking bias and distorted data collection. To address this, we propose the

Perturbed Quantile Regression (PQR) algorithm, which introduces randomized

perturbations of distorted risk measures to guide action selection. We theoret-

ically establish that PQR avoids biased exploration and converges to the true
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optimum, and empirically show that it outperforms variance-based exploration

methods across diverse benchmarks, including 55 Atari games.

The second part tackles the fundamental challenge of infinite dimensionality

in DistRL. Prior work introduced the notion of Bellman closedness, but this fails

to guarantee unbiased updates from finite samples in online learning. We propose

the concept of Bellman Unbiasedness, which characterizes functionals that are

not only preserved under Bellman updates but also estimable without bias from

finite samples. Our analysis shows that only moment functionals satisfy both

conditions. Building on this result, we design the first provably efficient DistRL

algorithm under general value function approximation—Statistical Functional

Least-Squares Value Iteration (SF-LSVI)—which achieves a tight regret bound

of Õ(dEH
3/2
√
K), improving upon prior results.

The third part turns to RLHF, where agents learn from preference feedback

instead of handcrafted rewards. Recent frameworks such as Direct Preference

Optimization (DPO) optimize policies directly without an explicit reward model

but implicitly assume that all preference data are generated by the optimal policy,

leading to a likelihood mismatch. To overcome this, we reinterpret preferences

through the lens of regret and propose Policy-labeled Preference Learning (PPL),

which explicitly integrates policy labels into the learning process. Our method

introduces contrastive KL regularization that aligns policies with preferred data

while contrasting against less-preferred data. We theoretically show that PPL

characterizes an equivalence class of reward models consistent with a given

optimal policy and establishes statistical robustness via uniquely defined regret.

Empirically, PPL substantially improves RLHF performance in offline robotic

manipulation tasks and demonstrates robustness in online learning.

Collectively, these contributions establish regret minimization as a unifying

theoretical principle that bridges distributional modeling and human feedback,
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linking the mathematical efficiency of RL with the behavioral realism of hu-

man decision-making. This work contributes to the foundation of trustworthy

and human-aligned artificial intelligence, providing theoretical and algorithmic

insights for robust decision-making under uncertainty.

Keywords: Reinforcement Learning, Distributional Reinforcement Learning,

Reinforcement Learning from Human Feedback, Regret Minimization

Student Number: 2020-24770
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Chapter 1

Introduction

1.1 The Shift from Perception to Action

Modern artificial intelligence has made extraordinary progress in perception—vision,

language, and speech—domains concerned with how machines see, interpret, and

generate information. Yet perception alone does not constitute intelligence. An

autonomous system must not only understand its environment but also decide

how to act within it, often under uncertainty and in alignment with human goals

and values. In this sense, reinforcement learning (RL) represents the natural

next step for AI: a shift from recognizing the world to interacting with it.

A familiar philosophical remark suggests that “Life is Choice between Birth

and Death”, underscoring that existence—biological or artificial—is shaped by a

continual sequence of decisions. Every agent must navigate uncertainty, evaluate

consequences, and refine its behavior over time to survive and succeed. This

perspective captures the essence of RL, which formalizes sequential decision-

making under uncertainty.
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The breakthroughs of the Alpha family of agents illustrate the remarkable

potential of RL, deomonstrating how RL methodologies have scaled as game

complexity progressively increased. Starting with AlphaGo’s mastery of the

sequential, high-search-depth game of Go [90], the methodology evolved into

AlphaZero, which generalized zero-knowledge learning across perfect-information

games like Chess and Shogi [91]. The culmination of this progress came with

AlphaStar’s success in the real-time, imperfect-information, and decentralized

strategy game, StarCraft II [98]. This accomplishment not only demonstrated

RL’s capability to discover strategies that exceed human intuition in increasingly

challenging environments but also provided crucial insights into the complexities

of real-time, sequential decision-making under uncertainty. Notably, these suc-

cesses were achieved in settings where objectives were clearly defined and explicit

reward signals were directly available from the environment. Such conditions

stand in sharp contrast to many real-world human-facing tasks, where objectives

are ambiguous and rewards are not directly observable.

Under such reward-based formulations, RL can be interpreted as a computa-

tional analogue of human decision-making. This abstraction, however, relies not

only on the availability of well-defined scalar rewards, but also on expectation-

based value representations that collapse uncertainty into a single summary

statistic. As a consequence, classical RL frameworks struggle to represent the

uncertainty, variability, and asymmetry that are intrinsic to human evaluation

and decision-making. In many real-world human-facing settings, where objectives

are ambiguous and feedback is qualitative, both the specification of rewards

and the modeling of uncertainty become fundamentally challenging. Bridging

this gap requires principled frameworks that go beyond reward maximization,

incorporating both uncertainty-aware evaluation and alternative feedback signals

aligned with human judgment.
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Figure 1.1: Four stages of human decision making

1.2 The Cognitive Gap: Uncertainty and Regret in

Human Decision-Making

To understand the limitations of classical reinforcement learning in human-

facing settings, it is essential to examine how humans actually make decisions.

Human decision-making can be decomposed into four essential stages, forming

a continuous cognitive loop:

1. Information/State Perception: This initial stage involves the agent

(human or AI) collecting and interpreting external stimuli to form an

internal representation of the current environment state. In RL terms,

this is the observation phase, essential for subsequent prediction. The

rapid advancement of generative AI (e.g., using models trained on vast

datasets of images, audio, and text) has dramatically improved the quality

of this stage. This foundational capability—accurate and rich internal

modeling of the environment—is the prerequisite upon which all subsequent

decision-making is built.

2. Outcome Prediction and Value/Preference Evaluation: Based on
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the perceived state, the agent predicts the potential outcomes of avail-

able actions. Crucially, this stage includes evaluation, where subjective

values, risk sensitivities, and personal preferences are applied to assign

worth to those predicted outcomes. A central characteristic of this stage is

the inherent uncertainty in prediction, which requires reasoning over the

distribution of possible outcomes rather than simple averages. Evidence

from neuroscience and cognitive psychology suggests that biological agents

employ distributional representations of reward uncertainty, while behav-

ioral economics has shown that risk-sensitive and non-expected utility

behaviors cannot be captured by mean-based evaluation alone.

3. Policy Formulation and Action Selection: This stage concerns real-

time execution, where evaluated predictions guide action selection. In

classical reinforcement learning, this process is formalized through policies

that maximize expected return given the current state. As a result, decision-

making is largely driven by expectation-based optimization, abstracting

away uncertainty beyond the mean.

4. Interaction and Feedback Circulation: The selected action is executed

in the environment, leading to a new state and yielding an outcome

(reward/cost) and feedback. This feedback then circulates back, refining

the initial perception and future evaluation models. This stage generates

two types of crucial feedback: explicit outcomes (next state, reward signal)

from the environment and internal feedback (prediction error, human

preference). In real-world human-facing systems, the lack of a clear, scalar

reward signal necessitates moving beyond traditional extrinsic rewards to

learning directly from qualitative human feedback (preferences, rankings).

Crucially, unlike real-time action selection, the interpretation of preference
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feedback is inherently retrospective, involving comparisons between realized

outcomes and counterfactual alternatives. This retrospective comparison

naturally aligns with the notion of regret.

Taken together, this cognitive loop reveals a fundamental mismatch with

classical reinforcement learning. While RL has been highly successful in modeling

prediction and action selection, it largely abstracts away two core aspects of

human cognition: (i) uncertainty in evaluation, where values are subjective and

distributional rather than scalar, and (ii) the retrospective, regret-driven nature

of human feedback processing.

The philosophical drive of this dissertation is rooted in this gap between cog-

nitive reality and mathematical idealization. Specifically, while human decision-

making is shaped by uncertainty in evaluation and retrospective, regret-driven

feedback, classical reinforcement learning—grounded in the Markov Decision

Process (MDP) framework— abstracts decision-making through two strong

assumptions: (i) the availability of a perfectly defined scalar reward, and (ii)

the sufficiency of expectation-based dynamic programming for optimization. In

many real-world human-facing settings, however, neither assumption reliably

holds. Environments are inherently stochastic, and critical feedback is often

qualitative, subjective, or inconsistent, rather than immediate and scalar. As

a result, agents trained via standard expected RL may exhibit behaviors that

are brittle, risk-indifferent, or misaligned with human values, which are deeply

sensitive to variability and worst-case scenarios. Addressing this gap requires

rethinking both how uncertainty is represented in value estimation and how

feedback signals are modeled beyond scalar rewards. In particular, when feedback

originates from human judgments rather than the environment, learning must

account for uncertainty in evaluation and the regret-driven nature of feedback.
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1.3 Research Scope and Unified Hypothesis on Uncer-

tainty

This dissertation is motivated by precisely this challenge, which lies at the

intersection of statistical modeling and behavioral alignment:

How can we design reinforcement learning systems that make decisions

under uncertainty in ways that are theoretically sound, practically robust, and

cognitively aligned with human judgment?

The complexity of this challenge arises from two fundamental limitations

inherent in the classical expected utility paradigm of RL: its inability to rigorously

model objective environmental stochasticity and its failure to capture nuanced

subjective human values. These shortcomings mean that conventional mean-

reward maximization is inadequate for real-world, high-stakes applications.

Consequently, these dual limitations—the reliance on expected utility and the

failure to capture human-like feedback—directly motivate the two distinct, yet

interconnected, research trajectories explored in this dissertation:

• Objective Uncertainty (Environmental Stochasticity): The failure

of expectation-based optimization to capture risk necessitates modeling

the full distribution of returns (Distributional RL; DistRL) to rigorously

account for environmental uncertainty and risk.

• Subjective Uncertainty (Value Ambiguity and Heterogeneity):

This trajectory focuses on creating algorithms that interpret and align with

subjective human feedback (Reinforcement Learning from Human Feed-

back; RLHF), specifically accounting for the uncertainty and heterogeneity

inherent in human preferences.

While these two trajectories are conceptually distinct, they are not indepen-
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dent lines of inquiry in this dissertation, but rather reflect a coherent progression

of a single research agenda centered on uncertainty-aware decision making.

My earlier work in DistRL focused on learning and exploiting environmental

uncertainty to enable efficient exploration and risk-aware control in stochastic

environments. By moving beyond expectation-based objectives and modeling

full return distributions, this line of research addresses a foundational question:

how should an agent act when outcomes are inherently stochastic, rare events

are consequential, and uncertainty itself must inform decision making rather

than be averaged away.

This perspective emphasizes that uncertainty is not merely a nuisance to be

mitigated, but a structural property of the environment that must be explicitly

represented and reasoned about. DistRL thus provides a principled framework

for capturing variability, risk, and tail behavior of returns, enabling more robust

policies in safety-critical or high-stakes domains.

At the same time, focusing on outcome distributions naturally raises a deeper

question:

How are decisions evaluated when uncertainty is not only a property of the

environment, but also a defining feature of human judgment?

In many settings, human evaluations are inherently sensitive to variability,

risk, and counterfactual comparisons rather than point estimates of performance.

That is, judgments depend not only on what happened, but on how a realized

trajectory compares to plausible alternatives under uncertainty. This observation

motivates a transition from modeling uncertainty over outcomes to modeling

uncertainty over evaluation. While the former concerns the stochasticity of

the environment, the latter concerns ambiguity and heterogeneity in human

values. Importantly, these two forms of uncertainty are not orthogonal. Human

judgments are often shaped by sensitivity to risk, missed opportunities, and
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unfavorable comparisons, all of which depend on the underlying uncertainty of

outcomes.

Here, regret provides a principled bridge between these two perspectives. In

DistRL, distributional uncertainty quantifies the range and variability of possi-

ble outcomes, guiding exploration and risk-sensitive behavior. In RLHF, regret

formalizes how humans implicitly assess actions by comparing realized behavior

against unchosen alternatives under uncertainty. Crucially, the formulation of

regret inherently incorporates both objective and subjective uncertainty: it

integrates distributional uncertainty—the range of plausible counterfactual out-

comes— with subjective evaluation—the human assessment of realized outcomes

against the best unchosen alternative.

The central hypothesis of this dissertation is that uncertainty-aware decision

making, grounded in distributional modeling and regret-based evaluation, provides

a principled foundation for both statistically robust learning and cognitively

aligned behavior.

1.4 Core Research Areas and Contributions

1.4.1 Distributional Reinforcement Learning: Uncertainty, Effi-

ciency, and Bias

DistRL is the mathematical extension of classical RL, recognizing that the full

distribution of returns contains information about risk and variability that is

essential in high-stakes domains (finance, healthcare, robotics). Capturing this

distributional asymmetry—a key component of human judgment formalized by

prospect theory and regret theory—is paramount. While empirically successful,

DistRL faces two central challenges addressed in this thesis:
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Mitigating the Pitfall of Optimism in Exploration. DistRL exploration

often employs optimism in the face of uncertainty (OFU), guiding action based

on high variance estimates. However, this strategy suffers from a pitfall of

optimism: it fundamentally conflates epistemic uncertainty (which should guide

exploration) with aleatoric uncertainty (intrinsic environmental randomness).

This leads to a persistent, systematic risk-seeking bias and sub-optimal data

collection. We solve this bias by introducing Perturbed Quantile Regression (PQR),

which replaces variance-based optimism with randomized perturbations applied

to distortion risk measures. PQR ensures unbiased exploration while maintaining

risk-neutral optimality, supported by theoretical convergence guarantees and

state-of-the-art empirical performance across complex benchmarks like Atari.

Achieving Provable Statistical Efficiency with General Approxima-

tion DistRL algorithms must approximate the infinite-dimensional return

distribution using finite statistical functionals (e.g., quantiles, moments). This

introduces two fundamental issues: first, the functional must satisfy Bellman

Closedness (it must be preserved under the Bellman update); second, it must

ensure unbiased estimability from the finite samples collected online. Previous

work focused only on the former, leaving algorithms vulnerable to accumulated

approximation errors and failing to guarantee efficiency. We formally introduce

Bellman Unbiasedness and prove that only moment functionals satisfy both

this new property and Bellman Closedness. Based on this robust foundation,

we propose the Statistical Functional Least-Squares Value Iteration (SF-LSVI)

algorithm. SF-LSVI is the first distributional RL algorithm with provable ef-

ficiency under general value function approximation, achieving a tight regret

bound of Õ(dEH
3/2
√
K).
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1.4.2 Reinforcement Learning from Human Feedback: Robust

Alignment via Regret

RLHF addresses the inability of classical RL to handle subjective and qualitative

human values, relying on pairwise preference comparisons to align agent behavior.

The emergence of Direct Preference Optimization (DPO) has been transfor-

mative, simplifying the alignment process by directly updating policies from

preferences without an explicit reward model. However, DPO’s success, primarily

demonstrated in LLM fine-tuning, rests on an assumption challenged by general

RL environments: that preference data originates from policies near-optimal for

the task.

Addressing Likelihood Mismatch in Stochastic Environments In stan-

dard and offline RL settings, preference data is generated by diverse, suboptimal

policies under environmental stochasticity. Applying DPO’s assumptions in this

context creates a severe likelihood mismatch: the suboptimality of the behavior

policy is incorrectly modeled as noise or inherent difficulty. This undermines

stability and generalization, especially when data is heterogeneous. We pro-

pose Policy-labeled Preference Learning (PPL) to fundamentally resolve this

mismatch. PPL reformulates human preference not through reward functions,

but through the lens of regret, incorporating the behavior policy label directly

into the learning objective. We show that regret, unlike reward, defines a unique,

policy-aware equivalence class that is inherently robust to heterogeneity. This

novel approach is further stabilized by a contrastive KL regularization. PPL

provides a principled framework for robust RLHF, significantly improving offline

alignment and extending its applicability beyond deterministic LLM settings to

general sequential decision-making.
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1.5 Organization of the Dissertation

RLHF DistRL

Regret Minimization

PPL  SF-LSVI

Sequential Decision Making under Uncertainty
from Human Feedback

PQR 
Research

Goal

Figure 1.2: Conceptual structure of this dissertation.

This dissertation is organized as follows: Chapter 2 provides the necessary

background on Markov Decision Processes, classical reinforcement learning, and

the two central research areas of this dissertation: distributional reinforcement

learning and reinforcement learning from human feedback. Chapter 3 revisits

the exploration problem in DistRL and introduces the Perturbed Quantile

Regression (PQR) algorithm, which addresses biased exploration by disentangling

epistemic and aleatoric uncertainties. Chapter 4 develops the concept of Bellman

Unbiasedness and presents Statistical Functional Least-Squares Value Iteration

(SF-LSVI), the first provably efficient distributional algorithm under general

value function approximation. Chapter 5 focuses on RLHF and introduces Policy-

labeled Preference Learning (PPL), a regret-based framework that resolves the

likelihood mismatch in preference optimization and achieves robust alignment
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with human feedback. Finally, Chapter 6 concludes the dissertation, summarizing

the key findings and outlining directions for future research. Supplementary

results and additional implementation details are provided in the appendices.

1.6 Publications

The following publications have been selected as they closely align with the

central themes of this dissertation. * indicates equal contribution.

• Taehyun Cho, Seungyub Han, Heesoo Lee, Kyungjae Lee, Jungwoo Lee.

“Pitfall of Optimism: Distributional Reinforcement Learning by Randomiz-

ing Risk Criterion.” Advances in Neural Information Processing Systems

(NeurIPS), 2023.

• Taehyun Cho, Seungyub Han, Seokhun Ju, Dohyeong Kim, Kyungjae

Lee, Jungwoo Lee. “Bellman Unbiasedness: Toward Provably Efficient Dis-

tributional Reinforcement Learning with General Value Function Approxi-

mation.” Proceedings of the 42nd International Conference on Machine

Learning (ICML), 2025.

• Taehyun Cho*, Seokhun Ju*, Seungyub Han, Dohyeong Kim, Kyungjae

Lee, Jungwoo Lee. “Policy-labeled Preference Learning: Is Preference

Enough for RLHF?” Proceedings of the 42nd International Conference on

Machine Learning (ICML), 2025.
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Chapter 2

Background

This chapter presents the theoretical and algorithmic foundations that underpin

the main contributions of this dissertation. We begin by formulating the rein-

forcement learning (RL) problem through Markov decision processes (MDPs),

outlining the standard framework for sequential decision-making. While clas-

sical RL provides a principled foundation for optimizing expected returns, it

assumes that rewards are well-specified and that uncertainty can be adequately

represented by expectations—assumptions that often fail in real-world settings.

To address these limitations, we review two major extensions: distributional

reinforcement learning (DistRL), which models the full distribution of returns to

capture risk and uncertainty, and reinforcement learning from human feedback

(RLHF), which replaces explicit reward signals with qualitative human judg-

ments. Finally, we introduce the concept of regret minimization, a theoretical

framework that unifies these perspectives by connecting statistical efficiency

with behavioral alignment. Together, these topics provide the conceptual and

mathematical background for the algorithms developed in Chapters 3–5.
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2.1 Reinforcement Learning and Markov Decision Pro-

cesses

Sequential decision-making is one of the central problems in artificial intelligence.

The mathematical framework most widely used to formalize this problem is

the notion of Markov decision processes (MDPs). In this section, we introduce

the preliminaries of reinforcement learning, including the definition of MDPs,

value functions, and the Bellman equations. We also highlight the limitations of

expectation-based RL, which motivate the development of distributional and

preference-based frameworks.

2.1.1 Markov Decision Processes

An episodic Markov decision process is defined by the tuple

M = (S,A, H,P, r),

where S is a (possibly infinite) state space, A is the action space,H is the horizon,

P = {Ph}Hh=1 are transition kernels, and r = {rh}Hh=1 are reward functions. At

each step h ∈ [H], the agent observes a state sh ∈ S, chooses an action ah ∈ A,

receives reward rh(sh, ah), and transitions to a new state sh+1 ∼ Ph(·|sh, ah). A

(stochastic) policy π = {πh}Hh=1 defines a distribution over actions given states:

πh(a|s) = P[ah = a|sh = s]. Unless otherwise noted, we consider discounted

returns with a discount factor γ ∈ [0, 1).

The quality of a policy is measured by its value functions. The state value

function is

V π
h (s) = Eπ

[
H∑
t=h

rt(st, at)

∣∣∣∣∣ sh = s

]
,

and the state–action value function is

Qπh(s, a) = rh(s, a) + Es′∼Ph(·|s,a)[V
π
h+1(s

′)].
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Figure 2.1: This modified N-Chain MDP illustrates how outcomes are governed

by full probability distributions rather than single scalar values. The agent at

S2 faces a choice between a low-variance, safe path (Left) and a high-variance,

risky path (Right). This structure highlights the representational limitations of

expectation-based RL

The Bellman operator T π defines a recursive mapping of value functions, and it

is a γ-contraction under the sup-norm. This property guarantees the existence

and uniqueness of Qπ and underpins the convergence of classical RL algorithms

such as value iteration and Q-learning.

2.1.2 Limitations of Classical RL

Despite its elegance, classical RL collapses all uncertainty into expectations.

Two trajectories with identical expected returns but very different variances

are treated as equivalent. This is problematic in domains where risk sensitivity

matters, such as finance or healthcare, where variance and tail risks are critical.
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To illustrate this representational deficiency, consider the N-Chain environ-

ment shown in Figure 2.1. A classical RL agent determines its policy solely by

maximizing the expected return. In this example, the optimal decision based on

the mean value may lead the agent to choose the Left Path, as its expected return

is slightly higher than the average expectation of the Right Path. However, this

expectation-based view cannot differentiate between the tightly concentrated,

low-risk distribution of the Left Path and the bimodal distribution of the Right

Path, which contains both high risk (low outcome potential) and high reward

(certain high outcome potential). By summarizing the return only by its mean,

classical RL is mathematically blind to these distinct risk profiles.

Moreover, this expectation-based view also conflicts with emerging findings

in neuroscience. The canonical understanding posits that the firing of midbrain

dopamine neurons encodes a scalar Reward Prediction Error (RPE)—the differ-

ence between the received reward and the expected mean return. However, this

simple scalar model struggles to explain recent experimental evidence showing

that individual dopamine neurons exhibit heterogeneous responses that reflect

more than just the mean, effectively encoding a spectrum of optimism and

pessimism related to the distribution of potential returns [32]. This suggests that

biological value systems naturally represent risk and uncertainty by tracking

the full probability distribution, not just its expectation.

Finally, classical RL presumes access to explicit scalar rewards, which are

often unavailable in real-world settings such as dialogue, preference learning,

or human–robot interaction. These limitations—the necessity of modeling risk

or uncertainty for robustness and the need to align with human biological

value systems and feedback—motivate the development of the distributional

perspective and the study of RL from human feedback.
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2.2 Distributional Reinforcement Learning

2.2.1 Distributional Bellman Equation and Convergence Prop-

erties

The seminal work of Bellemare et al. [12] formalized the concept of return

distributions. Instead of learning the expected return, they proposed learning the

entire probability distribution of the random return Zπ(s, a) for a given policy

π. The random return is the discounted sum of rewards from a state–action pair

(s, a):

Zπ(s, a) =
∞∑
t=0

γtr(st, at),

and its law is denoted by ηπ(s, a). This framework acknowledges that the total

return is a random variable, not a deterministic value, whose variability is often

critical in real-world applications.

The core of this new perspective lies in the distributional Bellman equation,

which defines a recursive relationship for the return distribution itself:

T πη(s, a) D= r(s, a) + γ η(s′, a′), s′ ∼ P(·|s, a), a′ ∼ π(·|s′).

Here,
D
= denotes equality in distribution. This equation represents a shift from a

functional mapping on scalars to an operator acting on distributions.

A crucial theoretical challenge was proving the convergence of this new

Bellman operator. Bellemare et al. [12] showed that the distributional Bellman

operator T π is not a contraction mapping under conventional norms like the sup-

norm or the total variation distance. However, they provided a novel convergence

guarantee by proving that for any p ≥ 1, T π is a γ-contraction under the

supremum p-Wasserstein distance:

W̄p(T πη, T πη′) ≤ γ W̄p(η, η
′),
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Figure 2.2: Visualization of the Distributional Bellman Operator T . The figure

illustrates the three key transformation steps required to construct the target

distribution in distRL. (Left) Components of the Next-State Distribu-

tion: Shows the individual probability components that collectively define the

value distribution of the subsequent state. (Center) Scaling by the Discount

Factor: The full distribution is compounded and scaled by the discount factor γ.

This results in the discounted distribution (solid orange fill), relative to the origi-

nal distribution (dashed line). (Right) Shifting by the Immediate Reward:

The final step shifts the discounted distribution (dashed line) horizontally by

the immediate reward, yielding the final target distribution (solid orange fill).

where W̄p(η, η
′) := sup(s,a)∈S×AWp(η(s, a), η

′(s, a)). This result demonstrated

that iterative application of the distributional Bellman operator converges to

the unique true return distribution ηπ, establishing DistRL as a mathematically

sound generalization of classical RL.

2.2.2 Distributional Bellman Optimality and Instabilities

While the policy evaluation operator T π enjoys the γ-contraction property in

the supremum p-Wasserstein distance, the situation changes dramatically in the

control setting. The distributional Bellman optimality operator T is defined by
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applying a greedy policy with respect to the expected returns:

T η(s, a) D= r(s, a) + γ η(s′, a⋆), a⋆ ∈ argmax
a′

EZ∼η[Z(s′, a′)],

where Z(s′, a′) ∼ η(s′, a′). This definition ensures that the means E[Z] evolve

exactly as in the classical Bellman optimality operator.

However, Bellemare et al. [12] established that the distributional Bellman

optimality operator T is fundamentally different from its policy-evaluation

counterpart. First, T is not a contraction in any metric, i.e., there exist value

distributions η, η′ such that W̄p(T η, T η′) > γ W̄p(η, η
′).

Second, when multiple actions attain the same expected return, T may

choose different greedy actions depending on the selection rule, and in this case

no fixed point η⋆ = T η⋆ need exist. Third, even when a fixed point exists, the

iterates ηk+1 := T ηk are not guaranteed to converge; sequences can oscillate

or converge only weakly to the broader set of nonstationary optimal value

distributions.

By contrast, the expected values remain well behaved: for any η1, η2,∥∥∥E[T η1]− E[T η2]
∥∥∥
∞
≤ γ

∥∥∥E[η1]− E[η2]
∥∥∥
∞
,

which implies that E[ηk]→ Q⋆ exponentially fast. This dichotomy highlights the

central instability of distributional control: although the mean values converge

reliably to the optimal Q-function, the underlying distributions can behave patho-

logically, exhibiting non-expansion, absence of fixed points, or non-convergence.

2.2.3 Approximation schemes in distributional RL

Categorical approximation A first practical algorithm in this line is C51 [12],

which represents return distributions on a fixed grid of N atoms {zi}Ni=1 equally

spaced between Vmin and Vmax. The agent learns probabilities {pi(s, a)}Ni=1 over
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these atoms, and the distributional Bellman update T πη is projected back onto

this support using a projection operator Φ. Hence, the categorical update can

be written as

η(s, a) ← Φc
(
r + γ η(s′, a′)

)
, a′ ∼ π(·|s′),

with Φc redistributing probability mass to the nearest atoms. Although this

projection introduces bias (the support cannot adapt to the true distribution),

Bellemare et al. [12] showed that the induced operator is non-expansive under

the squared Cramér distance, which suffices to guarantee stability. Empirically,

C51 achieved state-of-the-art results on the Atari 2600 benchmark without other

architectural modifications, suggesting that richer distributional targets can

dramatically improve learning efficiency and representation capacity.

Quantile approximation To address the rigidity of fixed supports, Dabney

et al. [31] proposed Quantile Regression Deep Q-Network (QR-DQN). Instead

of fixed atoms, QR-DQN parameterizes the return distribution ηπ(s, a) by N

learnable quantile values {θi(s, a)}Ni=1, corresponding to quantile levels τi =
i
N .

The training objective minimizes the quantile regression loss

L(θ) = 1

N

N∑
i=1

Ey∼η
[
ρτi
(
y − θi(s, a)

)]
, ρτ (u) = u(τ − 1{u < 0}).

This is equivalent to minimizing the 1-Wasserstein distance between predicted

and target distributions. In practice, QR-DQN employs the quantile Huber loss to

improve robustness. Given quantile targets y sampled from the Bellman update

and quantile predictions θi(s, a), the quantile Huber loss for quantile level τi is

ρκτi(u) =
∣∣τi − 1{u < 0}

∣∣Lκ(u), u = y − θi(s, a),
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where Lκ(u) is the Huber loss defined by

Lκ(u) =


1
2u

2, |u| ≤ κ,

κ
(
|u| − 1

2κ
)
, |u| > κ,

with κ > 0 a threshold parameter (typically set to 1). The full objective is then

L(θ) = 1

N

N∑
i=1

Ey∼η
[
ρκτi(y − θi(s, a))

]
.

This combines the robustness of the Huber loss with the asymmetry of quantile

regression, yielding more stable optimization and reduced sensitivity to outliers.

QR-DQN significantly outperformed C51 on Atari benchmarks, and its theoret-

ical grounding rests on the contraction of the projected Bellman operator in

expectation.

Building on QR-DQN, Dabney et al. [30] introduced Implicit Quantile Net-

works (IQN), which approximate the entire quantile function F−1
η : [0, 1]→ R

using a neural network. Rather than relying on a fixed set of quantile levels,

IQN samples τ ∼ U [0, 1] and outputs θτ (s, a) as an estimate of F−1
η (τ). This

implicit formulation provides a flexible and fine-grained representation of return

distributions, allowing the agent to capture distributional details beyond what

fixed quantile schemes can offer.

Extending this idea, Yang et al. [105] proposed Fully Parameterized Quantile

Functions (FQF), which jointly learn both the quantile fractions {τi} and the

corresponding quantile values {θi}. By adaptively allocating quantile fractions,

FQF focuses model capacity on critical parts of the return distribution, leading

to faster convergence and more accurate approximation. Empirically, both IQN

and FQF improved sample efficiency and achieved state-of-the-art performance

on Atari benchmarks, setting new records for distributional RL methods.
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Moment-based approximation More recently, Nguyen-Tang et al. [70]

proposed Moment Matching Distributional RL (MMDRL) and its deep variant

MMDQN. Unlike C51 and QR-DQN, which rely on predefined statistics (fixed

atoms or quantiles), MMDQN represents each return distribution ηπ(s, a) using a

set of learnable deterministic particles {Zθ(s, a)i}Ni=1. The update minimizes the

Maximum Mean Discrepancy (MMD) between the current particle set and the

Bellman target:

LMMD(θ) = MMD2
(
{Zθ(s, a)i}Ni=1, { r + γZθ−(s

′, a⋆)i}Ni=1

)
,

where a⋆ = argmaxa′
1
N

∑
i Zθ(s

′, a′)i in the control setting. This formulation

can be interpreted as implicitly matching all moments between the return

distribution and its Bellman target. Theoretically, MMD provides sufficient

conditions for contraction in certain kernel families and guarantees convergence

at rate O(1/
√
n) regardless of the dimension. Empirically, MMDQN achieved

superior performance on Atari-57, surpassing C51 and QR-DQN while sharing the

same network backbone, and achieving state-of-the-art mean human-normalized

scores among non-distributed agents. By discarding the restriction of predefined

statistics, MMDQN highlights a complementary perspective to quantile-based

methods, with natural extensions toward IQN- and FQF-style architectures.
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2.3 Reinforcement Learning from Human Feedback

2.3.1 Motivation and Origins

A central obstacle in reinforcement learning is the difficulty of designing reward

functions that are both correct and aligned with human intentions. Even small

misspecifications in a handcrafted reward can incentivize undesired behavior, a

phenomenon broadly known as reward hacking or reward exploitation. Inverse

reinforcement learning and imitation learning attempt to overcome this by

inferring reward functions from expert demonstrations. However, expert data

are often expensive to collect, and learned agents may be limited to imitating

the demonstrated policy rather than surpassing it.

In contrast, human feedback provides a more flexible and scalable source of

supervision. Instead of designing rewards directly, humans provide judgments

about behaviors produced by the agent. This signal is easier to elicit: while a non-

expert cannot always assign numerical scores, they can reliably indicate which

of two outputs better reflects their preference. Early works in preference-based

reinforcement learning (PbRL) demonstrated the feasibility of learning from such

feedback [3]. The seminal study of Christiano et al. [27] scaled this idea, showing

that collecting thousands of pairwise comparisons from non-expert annotators

sufficed to train agents on Atari games and continuous-control robotics. Their

work established RLHF as a practical methodology, and subsequent surveys [53]

have consolidated RLHF as a central paradigm for aligning powerful AI systems

with human values.

2.3.2 Canonical RLHF pipeline

The canonical RLHF framework can be described in three stages: (i) feedback

collection, (ii) reward modeling, and (iii) policy optimization.
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(i) Feedback collection Feedback can take various forms, including binary

comparisons, rankings, scalar ratings, or textual critiques. Among these, pairwise

trajectory or segment comparisons are the most common, as they balance

cognitive simplicity with statistical efficiency [94, 118]. For language models,

annotators often rank multiple responses for the same prompt, producing relative

judgments that are robust to annotation noise. Granularity is another design

choice: segment-level labels can improve sample efficiency by localizing signal,

while trajectory-level labels provide global quality assessments. Active feedback

strategies have also been explored, where the system selects queries that maximize

expected information gain [3, 58].

(ii) Reward modeling Given preference data, the next step is to fit a

parametric reward function Rψ. A widely used formulation is the Bradley–Terry

(BT) model [16]:

P[ζ+ ≻ ζ−] = σ
(
Rψ(ζ

+)−Rψ(ζ−)
)
, Rψ(ζ) =

∑
t

Rψ(st, at),

where σ is the logistic sigmoid function. Training then reduces to maximum

likelihood estimation over all annotated comparisons. This procedure ensures that

Rψ assigns higher scores to trajectories judged as better by humans, effectively

transforming qualitative judgments into a quantitative reward landscape.

(iii) Policy optimization The final stage optimizes the agent’s policy against

Rψ. To prevent divergence from the data distribution, the optimization is

regularized relative to a reference policy πref (e.g., a supervised fine-tuned

model). The canonical objective is

max
π

Ex,y∼π[Rψ(x, y)]− βKL
(
π(·|x) ∥πref(·|x)

)
,
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which has a closed-form solution π⋆(y|x) ∝ πref(y|x) exp(βRψ(x, y)). In practice,

this is approximated by PPO with KL penalties [8, 75, 94]. This pipeline

enabled notable successes such as high-quality summarization models [94] and

the alignment of large language models like InstructGPT [75].

2.3.3 Direct preference optimization (DPO) and extensions

To avoid the fragility of reward modeling, recent work proposes to optimize

policies directly from preference data. Rafailov et al. [77] introduced Direct Pref-

erence Optimization (DPO), which derives a surrogate objective by combining

the Bradley–Terry likelihood with the KL-regularized optimal policy form. For

a pair (ζ+, ζ−), the log-odds of preference simplify to a difference in log-policy

ratios:

log
P[ζ+ ≻ ζ−]
P[ζ− ≻ ζ+]

= β

(
log

π(ζ+)

πref(ζ+)
− log

π(ζ−)

πref(ζ−)

)
.

This yields the DPO loss

LDPO(π) = −E(ζ+,ζ−) log σ
(
β(log

π(ζ+)

πref(ζ+)
− log

π(ζ−)

πref(ζ−)
)
)
.

The loss resembles logistic regression on policy ratios, making optimization

stable and bypassing the need for Rψ. Empirically, DPO has proven more

sample-efficient and less prone to reward miscalibration, and it is now widely

used in LLM fine-tuning.

Variants and generalizations Following DPO, numerous extensions have

been proposed. SLiC-HF [113] introduces sequence-likelihood calibration for

greater robustness. Implicit Preference Optimization (IPO) [18] frames feedback

as implicit gradient signals, while ORPO [46] modifies the functional form of

the loss for stability and exploration. Weighted Preference Optimization (WPO)

[116] emphasizes off-policy robustness by reweighting comparisons. General

25



frameworks such as ΨPO [7] unify these objectives under a single family. Active

preference learning methods select informative queries to reduce annotation

costs [10, 68]. Collectively, these advancements underscore a critical shift in

preference learning research from simple functional alignment toward developing

more robust, generalizable, and data-efficient algorithms that move beyond the

explicit loss form of DPO.

2.3.4 Challenges and open directions

Although RLHF has advanced rapidly, several challenges remain fundamental.

Annotator heterogeneity Human preferences vary across individuals due

to differences in knowledge, style, or bias. Modeling all annotators as sharing

a single latent reward leads to noisy signals. Recent approaches address this

by fitting mixture models, annotator-specific parameters, or hierarchical priors.

Another direction is to collect feedback at varying granularity (token-, step-, or

trajectory-level) to disambiguate local vs global preferences.

Off-policy data and likelihood mismatch Feedback datasets are often

gathered from multiple behavior policies. Naively treating all data as optimal

leads to likelihood mismatch, where suboptimality is conflated with stochasticity.

This issue destabilizes offline RLHF and motivates corrections such as importance

weighting, conservative sampling, or contrastive regularization. Policy-aware

formulations that explicitly account for data-generation policies, such as regret-

based models, provide a promising direction.

Data efficiency Collecting human preferences is costly. Active learning meth-

ods attempt to reduce annotation burden by querying comparisons that maximize

expected information gain or model uncertainty [58]. Pairwise feedback can also
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be supplemented with heuristics, synthetic labels, or preference propagation to

reduce labeling requirements. Nonetheless, striking the balance between label

cost and policy improvement remains an open challenge.

Theoretical guarantees While the Bradley–Terry likelihood enjoys asymp-

totic consistency, its finite-sample and robustness properties remain less un-

derstood. Recent theoretical analyses have begun to establish minimax rates

and generalization bounds for preference learning [86, 104], as well as regret

guarantees for preference-based policy optimization [22, 38]. Bridging the gap

between these theoretical developments and empirical advances in large-scale

RLHF remains an important research frontier.
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2.4 Regret Minimization Framework

The study of decision-making under uncertainty has evolved through several

theoretical frameworks, each attempting to explain how humans evaluate risk and

choice. We begin with Expected Utility Theory and Prospect Theory, and then

describe how Regret Theory extends these models by introducing counterfactual

comparison as a core component of human decision-making. Finally, we discuss

the formal notion of regret in reinforcement learning and the conceptual bridge

that unites these perspectives.

2.4.1 From Expected Utility to Prospect Theory

Expected Utility Theory. Von Neumann and Morgenstern [99] assumes

that a rational decision-maker assigns a scalar utility u(x) to each outcome x

and selects the action that maximizes expected utility:

A∗ = argmax
i

∑
ω

p(ω)u(xi(ω)).

While this framework provides a rigorous normative foundation for rational

choice, it often fails to describe how humans actually make decisions. Empirical

studies show that people systematically violate its axioms—exhibiting intransi-

tive preferences, overweighting rare events, and shifting their choices depending

on how equivalent outcomes are framed. These deviations highlight that human

decision-making is not purely utility-maximizing but shaped by perception,

context, and emotion, motivating the development of alternative descriptive

theories such as prospect and regret theory.

Prospect Theory. Kahneman and Tversky [51] propose a psychologically

grounded alternative to Expected Utility Theory in which outcomes are evaluated

relative to a reference point r rather than in absolute terms. Let x denote an
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outcome and write v : R → R for the value function applied to deviations

from the reference point, with the following general properties: (i) reference

dependence and normalization: v(0) = 0; (ii) monotonicity and continuity: v

is continuous and strictly increasing; (iii) diminishing sensitivity: v is concave

over gains (x ≥ r) and convex over losses (x < r); (iv) loss aversion: the local

slope at the reference is steeper for losses than for gains, e.g., v′(0−) > v′(0+).

Given a prospect Ai that yields outcome xi(ω) in state ω with probability

p(ω), evaluation is

A∗ = argmax
i

∑
ω

p(ω) v
(
xi(ω)− r

)
.

In the cumulative version (CPT) [97], objective probabilities are replaced by

decision weights w : [0, 1]→ [0, 1] (increasing, w(0) = 0, w(1) = 1) that typically

overweight small probabilities and underweight large ones:

A∗ = argmax
i

∑
ω

w
(
p(ω)

)
v
(
xi(ω)− r

)
.

Although Prospect Theory successfully explains various behavioral phenom-

ena such as framing effects and risk-aversion in the loss domain, it still evaluates

each option independently. It does not explicitly capture the emotional compari-

son between chosen and unchosen outcomes. The next refinement, Regret Theory,

introduces this counterfactual component as a core element of decision-making.

2.4.2 Regret Theory: Anticipating Counterfactual Emotion

While Prospect Theory explains risk perception through reference-dependent

valuation, it does not capture how individuals evaluate their realized outcomes

relative to those that could have occurred. Regret Theory, first introduced

by Loomes and Sugden [60] and later formalized by Sugden [95], extends the
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analysis of risky choice by incorporating counterfactual comparison—a psycho-

logical mechanism through which people evaluate their choices against forgone

alternatives.

The central idea is that decision-makers anticipate the emotional conse-

quences of their choices, particularly the feeling of regret when an unchosen

alternative would have led to a better outcome. Let xa and xb denote out-

comes from two possible actions a and b, and u(·) be the utility function. The

experienced utility of choosing a over b is expressed as

U(xa;xb) = u(xa)−R
(
u(xb)− u(xa)

)
,

where R(·) is an increasing function representing the psychological cost of

regret (and rejoicing when the sign is reversed). Unlike Prospect Theory, which

defines value relative to an exogenous reference point, Regret Theory defines

the reference endogenously—it is determined by the outcome of the forgone

option. Thus, satisfaction depends jointly on what is obtained and what is

forgone, reflecting the inherently comparative and introspective nature of human

decision-making.

This counterfactual structure enables Regret Theory to account for several

empirically observed decision patterns in behavioral economics. First, the an-

ticipation of regret can lead individuals to reverse preferences once feedback

about alternatives becomes available, a phenomenon known as preference re-

versal [60, 61]. Second, experimental evidence shows a systematic asymmetry

between omissions and commissions: people often prefer inaction when action

carries a higher potential for self-blame or regret [39, 109]. Third, individuals

tend to avoid high-variance options that may evoke intense regret, leading to

patterns of regret aversion or cautious choice in repeated and feedback-driven

environments [14, 15]. Together, these findings highlight how anticipated emotion
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and self-evaluation influence real-world choice behavior.

In this sense, Regret Theory offers a perspective that complements Prospect

Theory. Whereas Prospect Theory describes how people perceive risk and value

through reference-dependent weighting, Regret Theory explains how they evalu-

ate their own choices through counterfactual reasoning and emotional feedback,

revealing the introspective dimension of human decision-making under uncer-

tainty.

2.4.3 Algorithmic Regret in Reinforcement Learning

In contrast to behavioral regret, reinforcement learning (RL) interprets regret

as a normative measure of learning efficiency. For a multi-armed bandit with

optimal arm a∗ and mean rewards µa, the cumulative regret after T rounds is

defined as

Regret(T ) =
T∑
t=1

(µa∗ − µat),

quantifying the opportunity loss incurred by not always selecting the optimal arm.

In a Markov decision process with horizon H and K episodes, the cumulative

regret measures the discrepancy between the optimal value function V ⋆
1 and the

value realized by the learned policy πk:

Regret(K) =

K∑
k=1

[
V ⋆
1 (s

k
1)− V

πk
1 (sk1)

]
.

A sublinear growth of this regret guarantees asymptotic optimality, establishing a

theoretical foundation for efficient exploration and continual policy improvement.

2.4.4 Bridging Behavioral and Algorithmic Perspectives

Although behavioral and algorithmic notions of regret originate from distinct

disciplines, their mathematical structures are remarkably aligned. Both quan-
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Table 2.1: Structural Correspondence between Behavioral and Algorithmic

Regret

Regret Theory Reinforcement Learning

Utility of chosen action u(xi) Return under current policy V π(st)

Utility of unchosen alternative u(xj) Return under optimal policy V ⋆(st)

Difference u(xi)− u(xj) Return gap V π(st)− V ⋆(st)

tify a counterfactual gap between realized and optimal outcomes, effectively

measuring the cost of deviation from the best possible decision.

In both settings, learning and adaptation proceed through the reduction of

this counterfactual difference: humans adjust their preferences to avoid future

regret, while RL agents refine their policies to minimize performance loss.

From this viewpoint, regret minimization emerges as a universal principle of

adaptive decision-making under uncertainty—linking emotional reasoning with

computational optimization.

2.4.5 Toward a Unified View

Seen from this unified perspective, regret serves as both a descriptive and norma-

tive construct. As a descriptive concept, it captures how humans psychologically

evaluate their choices—through emotional and counterfactual comparisons with

what might have been. As a normative concept, it defines how algorithms math-

ematically measure and minimize deviations from optimal behavior. In this way,

regret bridges human introspection with computational rationality, revealing a

shared structure between emotional learning and algorithmic optimization.
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2.5 Summary

This chapter formalized Markov decision processes (MDPs) and emphasized why

expectation-based objectives alone are inadequate for decision-making under

uncertainty. We reviewed distributional reinforcement learning as a framework for

modeling full return distributions and discussed RLHF as a practical approach to

aligning policies with human judgment. Finally, we positioned regret as a unifying

theoretical principle that connects behavioral realism with algorithmic efficiency.

Chapters 3–5 build directly upon these foundations: mitigating exploration bias

in distributional control, establishing unbiased functional updates with efficiency

guarantees, and integrating regret into preference-based learning.
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Chapter 3

Pitfall of Optimism: Distributional
Reinforcement Learning by
Randomizing Risk Criterion

Despite the richness of risk-sensitive information from return distribution, only

a few DistRL methods [29, 64, 71, 96, 115] have tried to employ its benefits for

exploration strategies which is essential in deep RL to find an optimal behavior

within a few trials. The main reason is that the exploration strategies so far

is based on parametric (epistemic) uncertainty which arise from insufficient or

inaccurate data. In particular, Optimism in the face of uncertainty (OFU) is one

of the fundamental exploration principles that employs parametric uncertainty

to promote exploring less understood behaviors and to construct confidence set.

In bandit or tabular MDP settings, OFU-based algorithms select an action with

the highest upper-confidence bound (UCB) of parametric uncertainty which can

be considered as the optimistic decision at the moment [20, 28].

However, in deep RL, it is hard to trivially estimate the parametric un-
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Figure 3.1: Illustrative example of why a biased risk criterion (näıve optimism)

can degrade performance. Suppose two actions have similar expected returns,

but different variances (intrinsic uncertainty). (Left) If an agent does not specify

the risk criterion at the moment, the probability of selecting each action should

be similar. (Right) As OFU principle encourages to decide uncertain behaviors,

the empirical variance from quantiles was used as an estimate of uncertainty

[54, 64, 66]. However, optimistic decision based on empirical variance inevitably

leads a risk-seeking behavior, which causes biased action selection.

certainty accurately due to the black-box nature of neural networks and high-

dimensionality of state-action space. Without further computational task, the

estimated variance from distribution is extracted as a mixture of two types of

uncertainty, making it difficult to decompose either component. For example,

DLTV [64] was proposed as a distribution-based OFU exploration that decays

bonus rate to suppress the effect of intrinsic uncertainty, which unintentionally

induces a risk-seeking policy. Although DLTV is the first attempt to introduce

OFU in distRL, we found that consistent optimism on the uncertainty of the

estimated distribution still leads to biased exploration. We will refer to this

side-effect as one-sided tendency on risk, where selecting an action based on

a fixed risk criterion degrades learning performance. In Section 3.3, we will

demonstrate the one-sided tendency on risk through a toy experiment and show

that our proposed randomized approach is effective to avoid this side effect.
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PQR replay buffer𝝐𝝐-greedy replay buffer DLTV replay buffer

: list of actions to be added to the buffer

Number of candidate actions

Figure 3.2: An illustrative example of proposed algorithm (PQR). Each distri-

bution represents the empirical PDF of return. PQR benefits from excluding

inferior actions and promoting unbiased selection with regards to high intrinsic

uncertainty through randomized risk criterion.

In this paper, we introduce Perturbed Distributional Bellman Optimality

Operator (PDBOO) to address the issue of biased exploration caused by a

one-sided tendency on risk in action selection. We define the distributional

perturbation on return distribution to re-evaluate the estimate of return by

distorting the learned distribution with perturbation weight. To facilitate deep

RL algortihm, we present Perturbed Quantile Regression(PQR) and test in Atari

55 games comparing with other distributional RL algorithms that have been

verified for reproducibility by official platforms [19, 76].

In summary, our contributions are as follows.

• A randomized approach called perturbed quantile regression(PQR) is pro-

posed without sacrificing the original (risk-neutral) optimality and im-

proves over näıve optimistic strategies.

• A sufficient condition for convergence of the proposed Bellman operator is

provided without satisfying the conventional contraction property.
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3.1 Backgrounds & Related works

3.1.1 Distributional RL

We consider a Markov decision process (MDP) which is defined as a tuple

(S,A, P,R, γ) where S is a finite state space, A is a finite action space, P :

S×A×S → [0, 1] is the transition probability,R is the random variable of rewards

in [−Rmax, Rmax], and γ ∈ [0, 1) is the discount factor. We define a stochastic

policy π(·|s) which is a conditional distribution over A given state s. For a fixed

policy π, we denote Zπ(s, a) as a random variable of return distribution of state-

action pair (s, a) following the policy π. We attain Zπ(s, a) =
∑∞

t=0 γ
tR(St, At),

where St+1 ∼ P (·|St, At), At ∼ π(·|St) and S0 = s, A0 = a. Then, we define an

action-value function as Qπ(s, a) = E[Zπ(s, a)] in [−Vmax, Vmax] where Vmax =

Rmax/(1− γ). For regularity, we further notice that the space of action-value

distributions Z has the first moment bounded by Vmax:

Z =
{
Z : S ×A →P(R)

∣∣ E[|Z(s, a)|] ≤ Vmax, ∀(s, a)
}
.

In distributional RL, the return distribution for the fixed π can be computed

via dynamic programming with the distributional Bellman operator defined as,

τ πZ(s, a) D= R(s, a) + γZ(S′, A′), S′ ∼ P (·|s, a), A′ ∼ π(·|S′)

where
D
= denotes that both random variables share the same probability distribu-

tion. We can compute the optimal return distribution by using the distributional

Bellman optimality operator defined as,

τZ(s, a) D= R(s, a) + γZ(S′, a∗), S′ ∼ P (·|s, a), a∗ = argmax
a′

EZ [Z(S′, a′)].

Bellemare et al. [12] have shown that τ π is a contraction in a maximal form of

the Wasserstein metric but τ is not a contraction in any metric. Combining
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with the expectation operator, E ◦ τ is a contraction so that we can guarantee

that the expectation of Z converges to the optimal state-action value. Another

notable difference is that the convergence of a return distribution is not generally

guaranteed to be unique, unless there is a total ordering ≺ on the set of greedy

policies.

3.1.2 Exploration on Distributional RL

To combine with deep RL, a parametric distribution Zθ is used to learn a

return distribution. Dabney et al. [31] have employed a quantile regression to

approximate the full distribution by letting Zθ(s, a) = 1
N

∑N
i=1 δθi(s,a) where

θ represents the locations of a mixture of N Dirac delta functions. Each θi

represents the value where the cumulative probability is τi =
i
N . By using the

quantile representation with the distributional Bellman optimality operator, the

problem can be formulated as a minimization problem as,

θ = argmin
θ′

D (Zθ′(st, at), τ Zθ−(st, at))

= argmin
θ′

N∑
i,j=1

ρκτ̂i(rt + γθ−j (st+1, a
′)− θ′i(st, at))

N

where (st, at, rt, st+1) is a given transition pair, a′ := argmaxa′ EZ [Zθ(st+1, a
′)],

τ̂i =
τi−1+τi

2 , ρκτ̂i(x) := |τ̂i − δ{x<0}|Lκ(x), and Lκ(x) := x2/2 for |x| ≤ κ and

Lκ(x) := κ(|x| − 1
2κ), otherwise.

Based on the quantile regression, Dabney et al. [31] have proposed a quantile

regression deep Q network (QR-DQN) that shows better empirical performance

than the categorical approach [12], since the quantile regression does not restrict

the bounds for return.

As deep RL typically did, QR-DQN adjusts ϵ-greedy schedule, which selects

the greedy action with probability 1− ϵ and otherwise selects random available
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actions uniformly. The majority of QR-DQN variants [30, 105] rely on the same

exploration method. However, such approaches do not put aside inferior actions

from the selection list and thus suffers from a loss [74]. Hence, designing a schedule

to select a statistically plausible action is crucial for efficient exploration.

In recent studies, Mavrin et al. [64] modifies the criterion of action selection

for efficient exploration based on optimism in the face of uncertainty. Using

left truncated variance as a bonus term and decaying ratio ct to suppress the

intrinsic uncertainty, DLTV was proposed as an uncertainty-based exploration in

DistRL without using ϵ-greedy schedule. The criterion of DLTV is described as:

a∗ = argmax
a′

(
EP [Z(s′, a′)] + ct

√
σ2+(s

′, a′)

)
,

ct = c

√
log t

t
, σ2+ =

1

2N

N∑
i=N

2

(θN
2
− θi)2,

where θi’s are the values of quantile level τi.

3.1.3 Risk in Distributional RL

Instead of an expected value, risk-sensitive RL is to maximize a pre-defined risk

measure such as Mean-Variance [112], Value-at-Risk (VaR) [26], or Conditional

Value-at-Risk (CVaR) [78, 79] and results in different classes of optimal policy.

Especially, Dabney et al. [30] interprets risk measures as the expected utility

function of the return, i.e., EZ [U(Z(s, a))]. If the utility function U is linear, the

policy obtained under such risk measure is called risk-neutral. If U is concave or

convex, the resulting policy is termed as risk-averse or risk-seeking, respectively.

In general, a distortion risk measure is a generalized expression of risk measure

which is generated from the distortion function.

Definition 3.1.1. Let h : [0, 1]→ [0, 1] be a distortion function such that

h(0) = 0, h(1) = 1 and non-decreasing. Given a probability space (Ω,F ,P) and
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a random variable Z : Ω→ R, a distortion risk measure ρh corresponding to

a distortion function h is defined by:

ρh(Z) := Eh(P)[Z] =
∫ ∞

−∞
z
∂

∂z
(h ◦ FZ)(z)dz,

where FZ is the cumulative distribution function of Z.

In fact, non-decreasing property of h makes it possible to distort the dis-

tribution of Z while satisfying the fundamental property of CDF. Note that

the concavity or the convexity of distortion function also implies risk-averse

or seeking behavior, respectively. Dhaene et al. [34] showed that any distorted

expectation can be expressed as weighted averages of quantiles. In other words,

generating a distortion risk measure is equivalent to choosing a reweighting

distribution.

Fortunately, DistRL has a suitable configuration for risk-sensitive decision

making by using distortion risk measure. Chow et al. [25] and Stanko and Macek

[93] considered risk-sensitive RL with a CVaR objective for robust decision

making. Dabney et al. [30] expanded the class of policies on arbitrary distortion

risk measures and investigated the effects of a distinct distortion risk measures

by changing the sampling distribution for quantile targets τ . Zhang and Yao

[111] have suggested QUOTA which derives different policies corresponding to

different risk levels and considers them as options. Moskovitz et al. [67] have

proposed TOP-TD3, an ensemble technique of distributional critics that balances

between optimism and pessimism for continuous control.

3.2 Perturbation in Distributional RL

3.2.1 Perturbed Distributional Bellman Optimality Operator

To choose statistically plausible actions which may be maximal for certain risk

criterion, we will generate a distortion risk measure involved in a pre-defined
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constraint set, called an ambiguity set. The ambiguity set, originated from

distributionally robust optimization (DRO) literature, is a family of distribution

characterized by a certain statistical distance such as ϕ-divergence orWasserstein

distance [36, 88]. In this paper, we will examine the ambiguity set defined by

the discrepancy between distortion risk measure and expectation. We say the

sampled reweighting distribution ξ as (distributional) perturbation and define it

as follows:

Definition 3.2.1. (Perturbation Gap, Ambiguity Set) Given a probability space

(Ω,F ,P), Define a random variable X : Ω→ R and a set of probability density

functions Ξ =
{
ξ : 0 ≤ ξ(w) <∞,

∫
w∈Ω ξ(w)P(dw) = 1

}
. For a given constraint

set U ⊂ Ξ, we say ξ ∈ U as a (distributional) perturbation from U and

denote the ξ−weighted expectation of X as follows:

Eξ[X] :=

∫
w∈Ω

X(w)ξ(w)P(dw),

which can be interpreted as the expectation of X under some probability measure

Q, where ξ = dQ/dP is the Radon-Nikodym derivative of Q with respect to P.

We further define d(X; ξ) = |E[X]− Eξ[X]| as perturbation gap of X with

respect to ξ. Then, for a given constant ∆ ≥ 0, the ambiguity set with the

bound ∆ is defined as

U∆(X) =
{
ξ ∈ Ξ : |E[X]− Eξ[X]| ≤ ∆

}
.

For brevity, we omit the input w from a random variable unless confusing.

Since ξ is a probability density function, Eξ[X] is an induced risk measure with

respect to a reference measure P. Intuitively, ξ(w) can be viewed as a distortion

to generate a different probability measure and vary the risk tendency. The

aspect of using distortion risk measures looks similar to IQN [30]. However,

instead of changing the sampling distribution of quantile level τ implicitly, we
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reweight each quantile from the ambiguity set. This allows us to control the

maximum allowable distortion with bound ∆, whereas the risk measure in IQN

does not change throughout learning. In Section 3.2.3, we suggest a practical

method to construct the ambiguity set.

Now, we characterize perturbed distributional Bellman optimality operator

(PDBOO) τ ξ for a fixed perturbation ξ ∈ U∆(Z) written as below:

τ ξZ(s, a) D= R(s, a) + γZ(S′, a∗(ξ)),

S′ ∼ P (·|s, a) , a∗(ξ) = argmax
a′

Eξ,P [Z(s′, a′)].

Notice that ξ ≡ 1 corresponds to a base expectation, i.e., Eξ,P = EP , which

recovers the standard distributional Bellman optimality operator τ . Specifically,

PDBOO perturbs the estimated distribution only to select the optimal behavior,

while the target is updated with the original (unperturbed) return distribution.

If we consider the time-varying bound of ambiguity set, scheduling ∆t is a

key ingredient to determine whether PDBOO will efficiently explore or converge.

Intuitively, if an agent continues to sample the distortion risk measure from a

fixed ambiguity set with a constant ∆, there is a possibility of selecting sub-

optimal actions after sufficient exploration, which may not guarantee eventual

convergence. Hence, scheduling a constraint of ambiguity set properly at each

action selection is crucial to guarantee convergence.

Based on the quantile model Zθ, our work can be summarized into two parts.

First, we aim to minimize the expected discrepancy between Zθ and τ ξZθ−
where ξ is sampled from ambiguity set U∆. To clarify notation, we write Eξ[·]

as a ξ−weighted expectation and Eξ∼P(U∆)[·] as an expectation with respect

to ξ which is sampled from U∆. Then, our goal is to minimize the perturbed

distributional Bellman objective with sampling procedure P:

min
θ′

Eξt∼P(U∆t )
[D(Zθ′(s, a), τ ξtZθ−(s, a))] (3.1)
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where we use the Huber quantile loss as a discrepancy on Zθ′ and τ ξZθ− at

timestep t. In typical risk-sensitive RL or distributionally robust RL, the Bellman

optimality equation is reformulated for a pre-defined risk measure [25, 92, 106].

In contrast, PDBOO has a significant distinction in that it performs dynamic

programming that adheres to the risk-neutral optimal policy while randomizing

the risk criterion at every step. By using min-expectation instead of min-max

operator, we suggest unbiased exploration that can avoid leading to overly

pessimistic policies. Furthermore, considering a sequence ξt which converges to

1 in probability, we derive a sufficient condition of ∆t that the expectation of

any composition of the operators E ◦τ ξn:1 := E ◦τ ξn ◦τ ξn−1 ◦ · · · ◦τ ξ1 has the

same unique fixed point as the standard. These results are remarkable that we

can apply the diverse variations of distributional Bellman operators for learning.

3.2.2 Convergence of the perturbed distributional Bellman op-

timality operator

Unlike conventional convergence proofs, PDBOO is time-varying and not a

contraction, so it covers a wider class of Bellman operators than before. Since

the infinite composition of time-varying Bellman operators does not necessarily

converge or have the same unique fixed point, we provide the sufficient condition

in this section. We denote the iteration as Z(n+1) := τ ξn+1Z
(n), Z(0) = Z for

each timestep n > 0 , and the intersection of ambiguity set as Ū∆n(Z(n−1)) :=⋂
s,a U∆n

(
Z(n−1)(s, a)

)
.

Assumption 3.2.2. Suppose that
∑∞

n=1∆n <∞ and ξn is uniformly bounded.

Theorem 3.2.3. (Weaker Contraction Property) Let ξn be sampled from

an ambiguity set Ū∆n(Z(n−1)) for every iteration. If Assumption 3.2.2 holds,

then the expectation of any composition of operators Eτ ξn:1 converges, i.e.,
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Eτ ξn:1 [Z]→ E[Z∗]. Moreover, the following bound holds,

sup
s,a

∥∥∥E[Z(n)(s, a)]− E[Z∗(s, a)]
∥∥∥
s,a

≤
∞∑
k=n

(
2γk−1Vmax + 2

k∑
i=1

γi(∆k+2−i +∆k+1−i)

)
.

Practically, satisfying Assumption 3.2.2 is not strict to characterize the

landscape of scheduling. Theorem 3.2.3 states that even without satisfying γ-

contraction property, we can show that E[Z∗] is the fixed point for the operator

Eτ ξn:1 . However, E[Z∗] is not yet guaranteed to be “unique” fixed point for

any Z ∈ Z. Nevertheless, we can show that E[Z∗] is, in fact, the solution of the

standard Bellman optimality equation, which is already known to have a unique

solution.

Theorem 3.2.4. If Assumption 3.2.2 holds, E[Z∗] is the unique fixed point of

Bellman optimality equation for any Z ∈ Z.

As a result, PDBOO generally achieves the unique fixed point of the standard

Bellman operator. Unlike previous distribution-based or risk-sensitive approaches,

PDBOO has the theoretical compatibility to obtain a risk-neutral optimal policy

even if the risk measure is randomly sampled during training procedure. For

proof, see Appendix A.1.3.

3.2.3 Practical Algorithm with Distributional Perturbation

In this section, we propose a perturbed quantile regression (PQR) that is a

practical algorithm for distributional reinforcement learning. Our quantile model

is updated by minimizing the objective function (3.1) induced by PDBOO. Since

we employ a quantile model, sampling a reweight function ξ can be reduced into

sampling an N -dimensional weight vector ξ := [ξ1, · · · , ξN ] where
∑N

i=1 ξi = N
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Algorithm 1 Perturbed Quantile Regression (PQR)

Input: (s, a, r, s′), γ ∈ [0, 1), timestep t > 0, ϵ > 0, concentration

β

Initialize ∆0 > 0.

∆t ← ∆0t
−(1+ϵ). // Assumption 3.2.2

ξ ← max
(
1N +∆t(Nx− 1N ), 0

)
where x ∼ Dir(β) // Sample

ξ ∼ Ū∆t(Z(t))

ξ ← Nξ/
∑
ξi // Refine as a weighting function

a∗ ← argmaxa′ Eξ[Z(s
′, a′)] // Select greedy action with perturbed return

τ θj ← r + γθj(s
′, a∗), ∀j // Target update with unperturbed distribution

t← t+ 1

Output:
∑N

i=1 Ej [ρκτ̂i(τ θj − θi(s, a))]

and ξi ≥ 0 for all i ∈ {1, · · · , N}. Based on the QR-DQN setup, note that the

condition
∫
w∈Ω ξ(w)P(dw) = 1 turns into

∑N
i=1

1
N ξi = 1, since the quantile level

is set as τi =
i
N .

A key issue is how to construct an ambiguity set with bound ∆t and then

sample ξ. A natural class of distribution for practical use is the symmetric

Dirichlet distribution with concentration β, which represents distribution over

distributions. (i.e. x ∼ Dir(β).) We sample a random vector, x ∼ Dir(β),

and define the reweight distribution as ξ := 1N + α(Nx − 1N ). From the

construction of ξ, we have 1−α ≤ ξi ≤ 1+α(N − 1) for all i and it follows that

|1− ξi| ≤ α(N − 1). By controlling α, we can bound the deviation of ξi from 1

and bound the perturbation gap as

sup
s,a
|E[Z(s, a)]− Eξ[Z(s, a)]| = sup

s,a

∣∣∣∣∫
w∈Ω

Z(w; s, a)(1− ξ(w))P(dw)
∣∣∣∣

≤ sup
w∈Ω
|1− ξ(w)| sup

s,a
E[|Z(s, a)|] ≤ sup

w∈Ω
|1− ξ(w)|Vmax ≤ α(N − 1)Vmax.
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Figure 3.3: Pipeline of PDBOO.

Hence, letting α ≤ ∆
(N−1)Vmax

is sufficient to obtain d(Z; ξ) ≤ ∆ in the quantile

setting. We set β = 0.05 · 1N to generate a constructive perturbation ξn which

gap is close to the bound ∆n. For Assumption 3.2.2, our default schedule is set

as ∆t = ∆0t
−(1+ϵ) where ϵ = 0.001.

Figure 3.3 shows the pipeline of our algorithm. With the schedule of perturba-

tion bound {∆n}, the ambiguity set U∆n(Zn−1) can be defined by previous Zn−1.

For each step, (distributional) perturbation ξn is sampled from U∆n(Zn−1) by

the symmetric Dirichlet distribution and then PDBOO τ ξn can be performed.

3.3 Experiments on Stochastic Enviornments with High

Intrinsic Uncertainty

Our experiments aim to investigate the following questions.

1. Does randomizing risk criterion successfully escape from the biased explo-

ration in stochastic environments?

2. Can PQR accurately estimate a return distribution?

3. Can a perturbation-based exploration perform sucessfully as a behavior

policy for the full Atari benckmark?
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𝑠𝑠0 𝑠𝑠1 𝑠𝑠2 𝑠𝑠3 𝑠𝑠4

Start
:𝑎𝑎0
: 𝑎𝑎1

no-op :𝑎𝑎2~𝑎𝑎6
:𝑎𝑎∗(optimal) 

Figure 3.4: Illustration of the N-Chain environment [73] with high uncertainty

starting from state s2. To emphasize the intrinsic uncertainty, the reward of

state s4 was set as a mixture model composed of two Gaussian distributions.

Blue arrows indicate the risk-neutral optimal policy in this MDPs.

Algorithm 2 Perturbed DLTV (p-DLTV)

Input: transition (s, a, r, s′), discount γ ∈ [0, 1)

Q(s′, a′) = 1
N

∑
j θj(s

′, a′)

ct ∼ c N (0, ln tt ) // Randomize the coefficient

a∗ ← argmaxa′(Q(s′, a′) + ct

√
σ2+(s

′, a′))

τ θj ← r + γθj(s
′, a∗), ∀j

Output:
∑N

i=1 Ej [ρκτ̂i(τ θj − θi(s, a))]

3.3.1 N-Chain Enviornment

For intuitive comparison between optimism and randomized criterion, we design

p-DLTV, a perturbed variant of DLTV, where coefficient ct is multiplied by a

normal distribution N (0, 12).

N-Chain with high intrinsic uncertainty. We extend N-Chain environment

[73] with stochastic reward to evaluate action selection methods. A schematic

diagram of the stochastic N-Chain environment is depicted in Figure 3.4. The

reward is only given in the leftmost and rightmost states and the game termi-
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nates when one of the reward states is reached. We set the leftmost reward as

N (10, 0.12) and the rightmost reward as 1
2N (5, 0.12) + 1

2N (13, 0.12) which has

a lower mean as 9 but higher variance. The agent always starts from the middle

state s2 and should move toward the leftmost state s0 to achieve the greatest

expected return. For each state, the agent can take one of six available actions:

left, right, and 4 no-op actions. The optimal policy with respect to mean is

to move left twice from the start. We set the discount factor γ = 0.9 and the

coefficient c = 50.

Despite the simple configuration, the possibility to obtain higher reward

in suboptimal state than the optimal state makes it difficult for an agent to

determine which policy is optimal until it experiences enough to discern the

characteristics of each distribution. Thus, the goal of our toy experiment is to

evaluate how rapidly each algorithm could find a risk-neutral optimal policy.

The results of varying the size of variance are reported in Appendix 3.1.

Analysis of Experimental Results. As we design the mean of each return

is intended to be similar, examining the learning behavior of the empirical

return distribution for each algorithm can provide fruitful insights. Figure 3.5

shows the empirical PDF of return distribution by using Gaussian kernel density

estimation. In Figure 3.5(b), DLTV fails to estimate the true optimal return

distribution. While the return of (s2, right) (red line) is correctly estimated

toward the ground truth, (s2, left) (blue line) does not capture the shape and

mean due to the lack of experience. At 20K timestep, the agent begins to see

other actions, but the monotonic scheduling already makes the decision like

exploitation. Hence, decaying schedule of optimism is not a way to solve the

underlying problem. Notably, p-DLTV made a much better estimate than DLTV

only by changing from optimism to a randomized scheme. In comparison, PQR
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Figure 3.6: Total count of performing true optimal action. The oracle (dashed

line) is to perform the optimal action from start to end.

estimates the ground truth much better than other baselines with much closer

mean and standard-deviation.

Figure 3.6 shows the number of timesteps when the optimal policy was

actually performed to see the interference of biased criterion. Since the optimal

policy consists of the same index a1, we plot the total count of performing

the optimal action with 10 seeds. From the slope of each line, it is observed

that DLTV selects the suboptimal action even if the optimal policy was initially

performed. In contrast, p-DLTV avoids getting stuck by randomizing criterion and

eventually finds the true optimal policy. The experimental results demonstrate

that randomizing the criterion is a simple but effective way for exploration on

training process.

Hyperparameter Sensitivity. In Figure 3.7, we compute the 2-Wasserstein

distance from the ground truth return distribution N (10γ2, (0.1γ2)2). Except for

QR-DQN , each initial hyperparameter {c,∆0} was implemented with grid search

on [1, 5, 10, 50, 100, 500, 1000, 5000] in 5 different seeds. As the hyperparameter
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Figure 3.7: 2-Wasserstein distance between the empirical return distribution and

the ground truth N (8.1, 0.0812). We use QR-DQN with a fixed setting of ϵ-greedy

as a reference baseline, because the hyperparameter of ϵ-greedy is not related to

the scale of Q-values.

decreases, each agent is likely to behave as exploitation. One interesting aspect

is that, while it may be difficult for DLTV and p-DLTV to balance the scale

between the return and bonus term, PQR shows robust performance to the initial

hyperparameter. This is because the distorted return is bounded by the support

of return distribution, so that PQR implicitly tunes the scale of exploration. In

practice, we set ∆0 to be sufficiently large. See Table A.1 in Appendix A.2.1.

To explore the effect of intrinsic uncertainty, we run multiple experiments

with various reward settings for the rightmost state as keeping their mean at 9.

As the distance between two Gaussians was increased, the performance of DLTV

decrease gradually, while other algorithms show consistent results. The result

implies the interference of one-sided tendency on risk is proportional to the

magnitude of the intrinsic uncertainty and the randomized criterion is effective

in escaping from the issue.
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Table 3.1: Total counts of performing true optimal action with 4 different seeds.

Reward Setting (8,10) (7,11) (6,12) (5,13) (4,14) (3,15) (2,16) (1,17)

QR-DQN 12293 11381 11827 12108 10041 11419 9696 11619

DLTV 9997 9172 9646 9251 7941 6964 7896 7257

p-DLTV 14344 14497 13769 15507 14469 14034 14068 13404

PQR 14546 15018 14693 15142 15361 13859 14602 14354

action stochasticity

extreme reward system

random initial force

+100
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Figure 3.8: (Left) Three main environmental factors causing high intrinsic

uncertainty on LunarLander-v2. (Right) Performance on LunarLander-v2

3.3.2 LunarLander-v2

To verify the effectiveness of the proposed algorithm in the complex environment

with high intrinsic uncertainty, we conduct the experiment on LunarLander-v2.

We have focused on three main factors that increase the intrinsic uncertainty

from the structural design of LunarLander environment:

• Random initial force: The lander starts at the top center with an

random initial force.

• Action stochasticity: The noise of engines causes different transitions

with same action.
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Table 3.2: Mean and median of best scores across 55 Atari games, measured as

percentages of human baseline. Reference values are from Quan and Ostrovski

[76] and Castro et al. [19].

50M Performance Mean Median > human > DQN

DQN-zoo (no-ops) 314% 55% 18 0

DQN-dopamine (sticky) 401% 51% 15 0

QR-DQN-zoo (no-ops) 559% 118% 29 47

QR-DQN-dopamine (sticky) 562% 93% 27 46

IQN-zoo (no-ops) 902% 131% 21 50

IQN-dopamine (sticky) 940% 124% 32 51

RAINBOW-zoo (no-ops) 1160% 154% 37 52

RAINBOW-dopamine (sticky) 965% 123% 35 53

PQR-zoo (no-ops) 1121% 124% 33 53

PQR-dopamine (sticky) 962% 123% 35 51

• Extreme reward system: If the lander crashes, it receives -100 points.

If the lander comes to rest, it receives +100 points.

Therefore, several returns with a fixed policy have a high variance. As

previously discussed about the fixedness from N-Chain environment, we can

demonstrate that randomized approaches, PQR and p-DLTV, outperform other

baselines in LunarLander-v2.

3.3.3 55 Atari Games

We compare our algorithm to various DistRL baselines, which have demonstrated

good performance on RL benchmarks. In Table 3.2, we evaluated 55 Atari results,
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averaging over 5 different seeds at 50M frames. We compared with the published

score of QR-DQN [31], IQN [30], and Rainbow [45] via the report of DQN-Zoo [76]

and Dopamine [19] benchmark for reliability. This comparison is noteworthy

since our proposed method only applys perturbation-based exploration strategy

and outperforms advanced variants of QR-DQN. 1

No-ops Protocol. First, we follow the evaluation protocol of [11, 65] on

full set of Atari games implemented in OpenAI’s Gym [17]. Even if it is well

known that the no-ops protocol does not provide enough stochasticity to avoid

memorization, intrinsic uncertainty still exists due to the random frame skipping

[62]. While PQR cannot enjoy the environmental stochasticity by the deterministic

dynamics of Atari games, PQR achieved 562% performance gain in the mean of

human-normalized score over QR-DQN, which is comparable results to Rainbow.

From the raw scores of 55 games, PQR wins 39 games against QR-DQN and 34

games against IQN.

Sticky actions protocol. To prevent the deterministic dynamics of Atari

games, Machado et al. [62] proposes injecting stochasticity scheme, called sticky

actions, by forcing to repeat the previous action with probability p = 0.25.

Sticky actions protocol prevents agents from relying on memorization and allows

robust evaluation. In Figure 3.9, PQR shows steeper learning curves, even without

any support of advanced schemes, such as n-step updates for Rainbow or IQN.

In particular, PQR dramatically improves over IQN and Rainbow in Assault,

Battlezone, Beamrider, Berzerk and Bowling. In Table 3.2, PQR shows

robust median score against the injected stochasticity.

It should be noted that IQN benefits from the generalized form of distri-

1In Dopamine framework, IQN was implemented with n−step updates with n = 3, which
improves performance.
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butional outputs, which reduces the approximation error from the number of

quantiles output. Compare to IQN, PQR does not rely on prior distortion risk

measure such as CVaR [24], Wang [102] or CPW [97], but instead randomly

samples the risk measure and evaluates it with a risk-neutral criterion. Another

notable difference is that PQR shows the better or competitive performance solely

through its exploration strategies, compared to ϵ-greedy baselines, such as

QR-DQN, IQN, and especially Rainbow. Note that Rainbow enjoys a combination

of several orthogonal improvements such as double Q-learning, prioritized replay,

dueling networks, and n-step updates.

We test our algorithm under 30 no-op settings to align with previous works.

We compare our baseline results with results from the DQN-Zoo framework [76],

which provides the full benchmark results on 55 Atari games at 50M and 200M

frames. We report the average of the best scores over 5 seeds for each baseline

algorithms up to 50M frames.

However, recent studies tried to follow the setting proposed by Machado et al.

[62] for reproducibility, where they recommended using sticky actions. Hence,

we provide all human normalized scores results across 55 Atari games for 50M

frames including previous report of Dopamine and DQN-Zoo framework to help

the follow-up researchers as a reference. We exclude Defender and Surround

which is not reported on Yang et al. [105] because of relialbility issues in the

Dopamine framework. In summary,

• DQN Zoo framework corresponds to 30 no-op settings (version v4).

• Dopamine framework corresponds to sticky actions protocol (version v0).
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Figure 3.11: Evaluation curves on Pong-v4 environments.

Ablation on PQR schedules

To investigate the effect of the schedule of ∆t, we run the experiment on Pong-v4

and set up several baselines as follows:

• 1/t0 : A fixed size ambiguity set. ∆t = O(1)

• PQR : Our main algorithm. ∆t = O(1/t1+ϵ)

• OPT : We fix the output vector, sampled from the Dirichlet distribution,

as [0, 0, . . . , 1], forcing the agent to estimate only optimistically.

•
√
log t/t : We imitate the schedule of p-DLTV (which does not satisfy the

sufficient condition we presented). ∆t = O(
√
log t/t)

•
√

log t/t + OPT : We imitate the schedule of DLTV (which does not satisfy

the sufficient condition we presented). We fixed the output vector, sampled

from the Dirichlet distribution, as [0, 0, . . . , 1], forcing the agent to estimate

only optimistically. ∆t = |O(
√

log t/t)|
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In this experiment, our proposed PQR is the only method that stably achieves

the maximum score with low variance. In the case of optimism (purple, orange

curve), the agent learns quickly in the early stages, but converges without

reaching the maximum score. In the case of fixed ambiguity set (blue curve),

it converges to suboptimal and eventually shows low performance. This result

implies the necessity of time-varying schedule of ∆t. Finally, when imitating the

schedule of p-DLTV (green curve), the performance also degrades implying that

the proposed sufficient condition is quite tight.

3.4 Related Works & Discussion

Randomized or perturbation-based exploration has been focused due to its strong

empirical performance and simplicity. In tabular RL, Osband et al. [74] proposed

randomized least-squares value iteration (RLSVI) using random perturbations

for statistically and computationally efficient exploration. Ishfaq et al. [47]

leveraged the idea into optimistic reward sampling by perturbing rewards and

regularizers. However, existing perturbation-based methods requires tuning of

the hyperparameter for the variance of injected Gaussian noise and depend

on well-crafted feature vectors in advance. On the other hand, PDBOO does

not rely on the scale of rewards or uncertainties due to the built-in scaling

mechanism of risk measures. Additionally, we successfully extend PQR to deep

RL scenarios in distributional lens, where feature vectors are not provided, but

learned during training.

3.4.1 Comparison with QUOTA

Zhang and Yao [111] have proposed Quantile Option Architecture(QUOTA) which

derives different policies corresponding to different risk levels and consider

them as options. By using an option-based framework, the agent learns a
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high-level policy that adaptively selects a pessimistic or optimistic exploration

strategy. While QUOTA has a similar approach in high-level idea, PQR gives a lot

of improvements in both theoretical analysis and experimental results.

• Theoretical guarantees of convergence toward risk-neutrality.

Since the agent selects via randomized risk criterion, the natural question

is:

“How should we control the injected randomness without sacrificing the

original purpose of risk-neutrality?”

In this work, we provide the sufficient condition for convergence without

sacrificing risk-neutral perspective. Although QUOTA explores by using

optimism or pessimism of a value distribution, there is no discussion

whether the convergence is guaranteed toward a risk-neutral objective.

• Explaining the effectiveness of randomized strategy.

QUOTA tested on two Markov chains to illustrate the inefficiency of expectation-

based RL. It assumed that each task has an inherent, but unknown, pre-

ferred risk strategy, so agents should learn hidden preference. In contrast,

we point out that the amount of inherent (intrinsic) uncertainty causes

the inefficiency of fixed optimism or pessimism based exploration.

• Significant performance difference in experimental results.

QUOTA is based on option-based learning which requires an additional

option-value network. While QUOTA aims to control risk-sensitivity by

transforming into an option O, the introduction of an option-value network

requires the agent to explore an action space |O| × |A|. This opposes the

idea of efficient exploration as a factor that increases the complexity

of learning. In contrast, PQR does not require a additional network and
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explores over the original action space. In addition, PQR does not artificially

discretize the ambiguity set of risk measurement. Another main reason

is that PQR does not depend on an greedy schedule which is well-known

for inefficient exploration strategies in tabular episodic MDP [48]. PQR

solely explores its own strategies which is a simple yet effective approach.

However, QUOTA depends on a greedy schedule in both quantile and option

networks.

3.4.2 Reproducibility issues on DLTV

For the expected concerns about the comparison with DLTV, we address some

technical issues to correct misconceptions of their performance. Before we

reproduce the empirical results of DLTV, Mavrin et al. [64] did not report each

raw scores of Atari games, but only the relative performance with cumulative

rewards comparing with QR-DQN. While DLTV was reported to have a cumulative

reward 4.8 times greater than QR-DQN, such gain mainly comes from Venture

which is evaluated as 22,700% from their metric (i.e., 463% performance gain

solely). However, the approximate raw score of Venture was 900 which is lower

than our score of 993.3. Hence, the report with cumulative rewards causes a severe

misconception that can be overestimated where the human-normalized score

is commonly used for evaluation metrics. For a fair comparison, we computed

based on mean and median of human-normalized scores and obtained results of

603.66% and 109.90%. Due to the absence of public results, however, DLTV was

inevitably excluded from the comparison with human-normalized score in the

main paper for reliability. In Table 3.3 and A.4, we report our raw scores and

human-normalized score of DLTV based on QR-DQN zoo performance.
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Table 3.3: Performance comparison among QUOTA, DLTV, and PQR on 55 Atari
games. Values in the first block indicate the number of games (out of 55) where
the row method outperforms the column method.

Comparison QUOTA
>

QR-
DQN Zhang

QR-
DQN zoo

>
QR-

DQN Zhang

PQR
>

QUOTA

PQR
>

QR-
DQN Zhang

PQR
>

DLTV

# wins (out of
55)

30 34 42 42 39

Human-normalized score summary

Metric QR-
DQN zoo

QR-
DQN Zhang

QUOTA DLTV PQR

Average HN Score 505.02 463.47 383.70 603.66 1078.00

Median HN Score 120.74 78.07 91.08 109.90 129.25

3.5 Summary

This chapter introduces a general framework for perturbation in distributional

Reinforcement Learning, leveraging the inherent characteristics of the return

distribution. We identify a critical limitation in traditional Optimism Under

Uncertainty exploration methods: they often conflate epistemic uncertainty with

aleatoric uncertainty by relying on variance estimates of the return distribution.

This confusion leads to a persistent risk-seeking bias and the collection of skewed

data during exploration.

To resolve this issue, we propose the Perturbed Quantile Regression (PQR)

algorithm. PQR facilitates robust action selection by introducing a randomly

perturbed risk measure applied to the distorted risk scale. Theoretically, we

demonstrate that PQR effectively avoids biased exploration while maintaining

convergence to the true optimal policy. Empirically, PQR achieves superior

performance over existing variance-based exploration methods across various
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benchmarks, including 55 Atari games. The PQR algorithm thus provides a

principled method to mitigate exploration bias in distributional RL, contributing

significantly to the field of risk-sensitive exploration.
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Chapter 4

Bellman Unbiasedness: Toward
Provably Efficient Distributional
Reinforcement Learning with
General Value Function
Approximation

While the distributional approach offers richer information about return un-

certainty, it introduces two key theoretical challenges that distinguish it from

expectation-based RL: (i) the infinite-dimensionality of the distribution and

(ii) the complexity of online distributional updates. In practice, we must rely

on approximations using a finite number of statistical functionals, such as cate-

gorical or quantile representations. However, previous work has shown that not

all statistical functionals can be exactly learned through the Bellman operator,

leading to the concept of Bellman Closedness [81], which characterizes preserved

functionals. While Bellman closedness is a necessary structural property, it is

insufficient for online learning; statistical functionals of the target distribution
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Figure 4.1: Venn-Diagram of Statistical Functional Classes. The diagram
illustrates categories of statistical functional. (Yellow ∩ Blue) Within the linear
statistical functional class, Rowland et al. [81] showed that the only functionals
satisfying Bellman closedness are moment functionals. (Red ∩ Blue) We extend
this concept by introducing the notion of Bellman unbiasedness, which not only
covers moment functionals but also includes central moment functionals from
the broader class including nonlinear statistical functionals. (Yellow ∩ Bluec)
According to Lemmas 3.2 and 4.4 of Rowland et al. [81], categorical functionals
are linear but not Bellman closed. (A) Maximum and minimum functionals are
Bellman closed, while they are not unbiasedly estimatable. (B) Median and
quantile functionals are neither Bellman closed nor unbiased, highlighting that
they are not proper to encode the distribution in terms of exactness. The proofs
corresponding to each region are provided in Appendix B.3.

must also be unbiasedly estimated from the sampled distribution. This is criti-

cal in the context of developing an algorithm that efficiently explores from a

regret minimization perspective while simultaneously performing distributional

Bellman updates in an online manner.

To address this, we introduce the key concept of Bellman Unbiasedness,

a property ensuring precise information learnability of a distribution from a

finite number of samples in an online setting. We prove that the exponential-

polynomial functional remains the unique solution in a class including nonlinear

statistical functionals that satisfies both Bellman Closedness and Bellman Unbi-
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asedness. Based on this, we propose Statistical Functional Least-Squares Value

Iteration (SF-LSVI), an exactly learnable and provably efficient DistRL algo-

rithm with general value function approximation. Our framework yields the

tight regret upper bound Õ(dEH
3/2
√
K), marking the first such result with a

weaker structural assumption compared to prior work in distRL.

4.1 Related Work

Distributional RL. In classical RL, the Bellman equation, which is based

on expected returns, has a closed-form expression. However, it remains unclear

whether any statistical functionals of return distribution always have their

corresponding closed-form expressions. Rowland et al. [81] introduced the notion

of Bellman closedness for collections of statistical functionals that can be updated

in a closed form via Bellman update. They showed that the only Bellman-closed

statistical functionals in the discounted setting are the moments EZ∼η[Zk]. More

recently, Marthe et al. [63] proposed a general framework for distRL, where the

agent plans to maximize its own utility functionals instead of expected return,

formalizing this property as Bellman Optimizability. They further demonstrated

that in the undiscounted setting, the only W1-continuous and linear Bellman

optimizable statistical functionals are exponential utilities 1
λ logEZ∼η[exp(λZ)].

In practice, C51 [12] and QR-DQN [31] are notable distributional RL algorithms

where the convergence guarantees of sampled-based algorithms are proved

[80, 82]. Dabney et al. [30] expanded the class of policies on arbitrary distortion

risk measures by taking the based distribution non-uniformly and improve the

sample efficiency from their implicit representation of the return distribution.

Cho et al. [23] highlighted the drawbacks of optimistic exploration in distRL,

introducing a randomized exploration that perturbs the distribution when the

agent selects next action.
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Table 4.1: Comparison for different methods under distributional RL framework.
H represents a subspace of infinite-dimensional space F∞. To bound the eluder
dimesion dE , Wang et al. [100] and Chen et al. [21] assumed the discretized
reward MDP.

Algorithm Regret Eluder dimension dE Bellman Completeness MDP assumption
Finite

Representation
Exactly
Learnable

O-DISCO

[100]
Õ(poly(dEH)

√
K) dimE(H, ϵ) distributional BC

discretized reward,
small-loss bound

✗ ✗

V-EST-LSR

[21]
Õ(dEH2

√
K) 1 dimE(H, ϵ) distributional BC

discretized reward,
lipschitz continuity

✗ ✗

SF-LSVI

[Ours]
Õ(dEH

3
2

√
K) dimE(FN , ϵ) statistical functional BC none ✓ ✓

RL with General Value Function Approximation. Regret bounds have

been studied for a long time in online RL, across various domains such as bandit

[1, 57, 83], tabular RL [5, 48, 52, 72, 74], and linear function approximation

[49, 103, 108]. In recent years, deep RL has shown significant performance using

deep neural networks as function approximators, and attempts have been made to

analyze whether it is efficient in terms of general function approximation [2, 50].

Wang et al. [101] established a provably efficient RL algorithm with general value

function approximation based on the eluder dimension dE [83] and achieves

a regret upper bound of Õ(poly(dEH)
√
K). To circumvent the intractability

from computing the upper confidence bound, Ishfaq et al. [47] injected the

stochasticity on the training data and get the optimistic value function instead

of upper confidence bound, enhancing computationally efficiency. Beyond risk-

neutral setting, several prior works have shown regret bounds under risk-sensitive

objectives (e.g., entropic risk [37, 59], CVaR [9]), which align with our approach

in that they are built on a distribution framework. Liang and Luo [59] achieved

the regret upper bound of Õ(exp(H)
√
|S|2|A|H2K) and the lower bound of

Ω(exp(H)
√
|S||A|HK) in tabular setting.

1In Chen et al. [21], the regret bound is written as Õ(dEL∞(ρ)H
√
K), where L∞(ρ)

represents the lipschitz constant of the risk measure ρ, i.e., |ρ(Z)−ρ(Z′)| ≤ L∞(ρ)∥FZ−FZ′∥∞.
Since L∞(ρ) ≥ H in risk-neutral setting, we translate the regret bound into Õ(dEH

2
√
K).
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DistRL with General Value Function Approximation. Recently, only

few efforts have aimed to bridge the gap between two fields. Wang et al. [100]

proposed a distributional RL algorithm, O-DISCO, which enjoys small-loss bound

by using a log-likelihood objective. Similarly, Chen et al. [21] provided a risk-

sensitive RL framework with static lipschitz risk measure. While these studies

analyze within a distributional framework, they do not address the intractability

of implementation in infinite-dimensional space of distributions. In contrast,

our approach focuses on a statistical functional framework, providing a detailed

comparison with other distRL methods as shown in Table 5.1.

4.2 Preliminaries

Episodic MDP. We consider a episodic Markov decision process which is

defined as aM = (S,A, H,P, r) characterized by state space S, action space A,

horizon length H, transition kernels P = {Ph}h∈[H], and reward r = {rh}h∈[H]

at step h ∈ [H]. The agent interacts with the environment across K episodes.

For each k ∈ [K] and h ∈ [H], Hk
h = (s11, a

1
1, . . . , s

1
H , a

1
H , . . . , s

k
h, a

k
h) represents

the history up to step h at episode k. We assume the reward is bounded by [0, 1]

and the agent always transit to terminal state send at step H +1 with rH+1 = 0.

Policy and Value Functions. A (deterministic) policy π is a collection

of H functions {πh : S → A}Hh=1. Given a policy π, a step h ∈ [H], and a

state-action pair (s, a) ∈ S ×A, the Q and V -function are defined as Qπh(s, a)(:

S ×A → R) := Eπ
[∑H

h′=h rh′(sh′ , ah′) | sh = s, ah = a
]
and V π

h (s)(: S → R) :=

Eπ
[∑H

h′=h rh′(sh′ , ah′) | sh = s
]
.
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Random Variables and Distributions. For a sample space Ω, we extend

the definition of the Q-function into a random variable and its distribution,

Zπh (s, a)(: S ×A× Ω→ R) :=
H∑

h′=h

rh′(sh′ , ah′) | sh = s, ah = a, ah′ = πh′(sh′),

ηπh(s, a)(: S ×A →P(R)) := law(Zπh (s, a)).

Analogously, we extend the definition of V -function by introducing a bar nota-

tion.

Z̄πh (s)(: S × Ω→ R) :=
H∑

h′=h

rh′(sh′ , ah′) | sh = s, ah′ = πh′(sh′),

η̄πh(s)(: S →P(R)) := law(Z̄πh (s)).

Note that Z̄πh (s) = Zπh (s, π(s)) and η̄πh(s) = ηπh(s, π(s)). We use π⋆ to de-

note an optimal policy ( i.e., π⋆h(·|s) = argmaxπ V
π
h (s) ) and denote V ⋆

h (s) =

V π⋆

h (s), Q⋆h(s, a) = Qπ
⋆

h (s, a), η⋆h(s, a) = ηπ
⋆

h (s, a), and η̄⋆h(s) = η̄π
⋆

h (s). For no-

tational simplicity, we denote the expectation over transition, [PhV π
h+1](s, a) =

Es′∼Ph(·|s,a)V
π
h+1(s

′), [PhZ̄πh+1](s, a) = Es′∼Ph(·|s,a)Z̄
π
h+1(s

′), and [Phη̄πh+1](s, a) =

Es′∼Ph(·|s,a)η̄
π
h+1(s

′). 2 For brevity, we refer to η̄π simply as η̄.

In the episodic MDP, the agent aims to learn the optimal policy through a

fixed number of interactions with the environment across a number of episodes. At

the beginning of each episode k(∈ [K]), the agent starts at the initial state sk1 and

choose a policy πk. In step h(∈ [H]), the agent observes skh(∈ S), takes an action

akh(∈ A) ∼ πkh(·|skh), receives a reward rh(s
k
h, a

k
h), and the environment transits

to the next state skh+1 ∼ Ph(·|skh, akh). Finally, we measure the suboptimality of

an agent by its regret, which is the accumulated difference between the ground

truth optimal and the return received from the interaction. The regret after K

episodes is defined as Reg(K) =
∑K

k=1 V
⋆
1 (s

k
1)− V πk

1 (sk1).

2Note that Es′∼Ph(·|s,a)η̄
π
h+1(s

′) is a mixture distribution.
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Distributional Bellman Optimality Equation. Recall that η⋆h satisfies

the following optimality equation:

η⋆h(s, a) = (τ hη⋆h+1)(s, a)

:= Es′∼Ph(·|s,a),a′∼π⋆h(·|s′)[(Brh)#η
⋆
h+1(s

′, a′)]

= (Brh)#[Phη
⋆
h+1](s, a)

where Br : R → R is defined by Br(x) = r + x, and g#η ∈ P(R) is the

pushforward of the distribution η through g (i.e., g#η(A) = η(g−1(A)) for any

Borel set A ⊆ R).

Additional Notations. For a given N , we denote an N−dimensional function

class FN := F (1) × · · · × F (N) ⊆
{
f = [f (1), · · · , f (N)] : S × A → RN

}
. Given

a dataset D = {(st, at, [z(1)t , . . . , z
(N)
t ])}|D|

t=1 ⊆ S ×A× RN , a set of state-action

pairs Z = {(st, at)}|Z|
t=1 ⊆ S ×A and for a function f : S ×A → RN , we define

the norm ∥f (n)∥∞, ∥f∥∞,1, ∥f∥D, ∥f∥Z as written in Appendix B.1. For a set of

(vector-valued) functions FN ⊆ {f : S ×A → RN}, the width function of (s, a)

is defined as w(n)(FN , s, a) := maxf,g∈FN |f (n)(s, a)− g(n)(s, a)|.

4.3 Statistical Functionals in Distributional RL

In this section, we define two key concepts in the distRL framework: the statistical

functional and the sketch. We also illustrate Bellman closedness, a crucial

property from Bellemare et al. [13]. Next, we introduce Bellman unbiasedness,

a novel concept that complements the previous property and is essential for

provable efficiency. As shown in Figure 4.2, quantile functionals cannot be

updated in an unbiased manner (as proved in Theorem 4.3.3), demonstrating

that only certain sketches can be updated exactly. We then show that the only

sketch satisfying both properties is the moment functional, which is unique
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Figure 4.2: Illustrative representation of sketch-based Bellman updates for a
mixture distribution. Instead of updating the distributions directly, each sampled
distribution is embedded through a sketch ψ (e.g., mean µ, quantile qi). The
transformation ϕψ aims to compress the mixture distribution into the same
number of parameters, ensuring unbiasedness to prevent information loss.

among statistical functionals. Finally, we discuss the intractability of the previous

structural assumption, distributional Bellman Completeness, and its tendency to

cause linear regret. To address this, we introduce statistical functional Bellman

Completeness, a relaxed assumption, and explain why it satisfies both properties.

4.3.1 Bellman Closedness

Definition 4.3.1 (Statistical functionals, Sketch; [13]). A statistical func-
tional is a mapping from a probability distribution to a real value ψ : P(R)→ R.
A sketch is a vector-valued function ψ1:N : P(R)→ RN specified by an N -tuple
where each component is a statistical functional,

ψ1:N (·) = (ψ1(·), · · · , ψN (·)).

We denote the domain of sketch as Pψ1:N
(R) and its image as Iψ1:N

=

{ψ1:N (η̄) : η̄ ∈ Pψ1:N
(R)}. We further extend to state return distribution

functions ψ1:N (η̄) =
(
ψ1:N (η̄(s)) : s ∈ S

)
.

Definition 4.3.2 (Bellman closedness; [81]). A sketch ψ1:N is Bellman closed
if there exists an operator τ ψ1:N

: ISψ1:N
→ ISψ1:N

such that

ψ1:N (τ η̄) = τ ψ1:N
ψ1:N (η̄) for all η̄ ∈P(R)S

which is closed under a distributional Bellman operator τ : P(R)S →P(R)S .
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η τ η ψ(τ η)

ψ(η) τ ψψ(η)

Figure 4.3: Bellman Closedness

η T η ψ(T η)

ψ(η) T̂ψψ(η) EP[ϕψ◦T̂ψψ(η)]Sample

next state

Unbiasedly

estimate

Figure 4.4: Bellman Unbiasedness

Figure 4.5: Illustration of Bellman Closedness and Bellman Unbiasedness. The
above path represents an ideal distributional Bellman update. Due to the
infinite-dimensionality, the update process should be represented by using a finite-
dimensional embedding (sketch) ψ. Since the transition kernel P is unknown, the
below path describes that the implementation should sample the next state and
update by using T̂ψ with the empirical transition kernel P̂. A sketch ψ is Bellman

unbiased if T̂ψ ◦ ψ can unbiasedly estimate ψ ◦ T through some transformation

ϕψ, i.e., ψ(T η) = EP[ϕψ ◦ T̂ ψ(η)].

Bellman closedness is the property that a sketch are exactly learnable when

updates are performed from the infinite-dimensional distribution space to the

finite-dimensional embedding space. While classical Bellman equation implies the

existence of Bellman operator for expected values, not all statistical functional

has such corresponding Bellman operator. Precisely, Rowland et al. [81] showed

that the only finite linear statistical functionals that are Bellman closed are

given by the collections of statistical functionals where its linear span is equal

to the set of exponential-polynomial functionals. 3

Theorem 4.3.3. Quantile functional cannot be Bellman closed under any
additional sketch.

While Rowland et al. [81] focused on “linear” statistical functionals in defining

a sketch (i.e., ψ(η̄) = EZ∼η̄[h(Z)] for some h), leaving questions about nonlinear

functionals, we extend this by showing that ”nonlinear” statistical functionals,

such as maximum or minimum, can also be Bellman closed. Additionally, while

3In discounted setting, a unique solution becomes moments. We’ve overwritten it for
convinience.
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their proof implicitly treated quantiles as linear functionals, we provide a

technical clarification in Appendix B.3.1 where we formally demonstrate that

no sketch Bellman operator exists for quantiles.

4.3.2 Bellman Unbiasedness

While the intractability caused by infinite-dimensionality was addressed in Bell-

man closedness, another intractable element which has not yet fully tackled

is the sampling of the next state. During the implementation, note that the

agent does not have access to the transition kernel P. Instead, the agent can

only access the empirical transition kernel P̂(·|s, a) = 1
K

∑K
k=1 1{s′k = · |s, a}

which is derived from K sampled next states. This limitation implies that

the operator should be treated as an empirical operator T̂ψ, rather than Tψ
(i.e., T̂ψψ(η̄) := ψ((Br)#[P̂η̄])). Therefore, we naturally introduce a new no-

tion of Bellman unbiasedness to unbiasedly estimate the expected distribution

(Br)#Es′∼P(·|s,a)[η̄(s
′)], which is a mixture by transitions, from the sample distri-

bution (Br)#η̄(s′).

Definition 4.3.4 (Bellman unbiasedness). A sketch ψ(= ψ1:N ) is Bellman
unbiased if a vector-valued estimator ϕψ = ϕψ(ψ(·), · · · , ψ(·)) : (ISψ )k → ISψ
exists where the sketch of expected distribution (Br)#Es′∼P(·|s,a)[η̄(s

′)] can be
unbiasedly estimated by ϕψ using the k sampled sketches from the sample
distribution (Br)#η̄(s′), i.e.,

Es′i∼P

[
ϕψ

(
ψ
(
(Br)#η̄(s′1)

)
, · · · , ψ

(
(Br)#η̄(s′k)

)
︸ ︷︷ ︸

k sampled sketches from sample distribution T̂ψψ(η̄(s))

)]

= ψ
(
(Br)#Es′∼P(·|s,a)[η̄(s

′)]
)
.

Bellman unbiasedness is another natural definition, similar to Bellman

closedness, which takes into account a finite number of samples for the transition.
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For example, mean-variance sketch is Bellman unbiased as the following unbiased

estimator ϕ(µ,σ2) exists for k sample estimates:

(µ, σ2) = ϕ(µ,σ2)

(
(µ̂1, σ̂

2
1), · · · , (µ̂k, σ̂2k)

)
=
(1
k

k∑
i=1

µ̂i,
1

k

k∑
i=1

(µ̂i −
1

k

k∑
i=1

µ̂i)
2 + σ̂2i

)
On the other hand, median functional is not Bellman unbiased since there is

no unbiased estimator for median. Then, the following question naturally arises;

”Which sketches are unbiasedly estimatable under the sketch-based Bellman

update?”

The following lemma answers this question.

Lemma 4.3.5. Let Fη̄ be a CDF of the probability distribution η̄ ∈ Pψ(R)S .
Then a sketch is Bellman unbiased if and only if the sketch is homogeneous
over Pψ(R)S of degree k, i.e., there exists some vector-valued function h =
h(x1, · · · , xk) : X k → RN such that

ψ(η̄) =

∫
· · ·
∫
h(x1, · · · , xk)dFη̄(x1) · · · dFη̄(xk).

Lemma 4.3.5 states that in statistical functional dynamic programming, the

unbiasedly estimatable embedding of a distribution can only be structured in

the form of functions that are homogeneous of finite degree [42]. To illustrate

that homogenity defines a broader class than linear functionals, consider the

variance as a simple example. Variance is clearly not a linear functional, as it is

non-additive. However, it can be written as

Var(η̄) = EZ1∼η̄[(Z1 − EZ2∼η̄[Z2])
2]

= EZ1,Z2∼η̄[Z
2
1 − 2Z1Z2 + Z2

2 ] = EZ1,Z2∼η̄[h(Z1, Z2)]

which implies the homogenity of degree 2. Taking this concept further and

combining it with the results on Bellman closedness, we prove that even when
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including a nonlinear statistical functional, the only sketch that can be exactly

learned and unbiasedly estimated in a finite-dimensional embedding space is the

moment sketch.

Theorem 4.3.6. The only finite sketches that are both Bellman unbiased and
Bellman closed are given by collections of ψ1, . . . , ψN where its linear span
{
∑N

n=0 αnψn| αn ∈ R , ∀N} is equal to the linear span of the set of exponential
polynomial functionals {η → EZ∼η[Z l exp (λZ)]| l = 0, 1, . . . , L, λ ∈ R}, where
ψ0 is the constant functional equal to 1.

Compared to Rowland et al. [81], we extend beyond linear statistical func-

tionals to include nonlinear statistical functionals, showing the uniqueness of

the moment functional. As shown in Figure 4.1, our theoretical results not only

show that high-order central moments such as variance or skewness are exactly

learnable and unbiasedly estimatable, but also reveal that other nonlinear sta-

tistical functionals like median or quantiles inevitably involve approximation

errors due to biased estimations.

Necessity of Bellman unbiasedness. Bellman unbiasedness ensures that

updates can be unbiasedly performed when only a finite number of sampled

sketches are available. In other words, it guarantees that the sequence of sampled

sketches forms a martingale, enabling the construction of confidence regions

through concentration inequalities. This property is crucial for establishing

provable efficiency in terms of regret minimization.

Complementary roles of unbiasedness and closedness. At first glance,

Bellman Unbiasedness (BU) may appear to be a stricter subset of Bellman

Closedness (BC). However, as illustrated in Figure 4.1, the relationship is

more subtle: for example, the categorical sketch is BU but not BC, whereas
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functionals like the maximum or minimum are BC but not BU. More precisely,

BU guarantees the existence of an unbiased estimator of the ground-truth sketch

given a finite number of sampled sketches. In contrast, BC plays a complementary

role by ensuring that the update process consistently provide such sketches.

If a sketch is BU but not BC–as in the case of the categorical sketch–then

the update process cannot continue providing new sampled sketches, making

dynamic programming infeasible.

4.3.3 Statistical Functional Bellman Completeness

We consider distributional reinforcement learning with general value function

approximation (GVFA). For successful TD learning, GVFA framework for

classical RL commonly requires the assumption, Bellman Completeness, that

after applying Bellman operator, the output lies in the function class F [6, 47,

101]. As a natural extension, our approach receives a tuple of function class

FN ⊆ {f : S × A → RN} as input to represent N moments of distribution.

Building on this, we assume that for any η̄ : S →P([0, H]), the sketch of target

function lies in the function class FN .

Assumption 4.3.7 (Statistical Functional Bellman Completeness). For any
distribution η̄ : S →P([0, H]) and h ∈ [H], there exists fη̄ ∈ FN which satisfies

fη̄(s, a) = ψ1:N

(
(Brh)#[Phη̄](s, a)

)
∀(s, a) ∈ S ×A

DistBC inevitably leads to linear regret. In the seminal works, Wang

et al. [100] and Chen et al. [21] assumed that the function classH ⊆ {η : S×A →

P([0, H])} follows the distributional Bellman Completeness (distBC) assumption

(i.e., if η ∈ H for all π, h ∈ [H], τ πhη ∈ H). This seems natural, but constructing

a finite-dimensional subspace H that satisfies distBC is quite challenging. Since

the distributional Bellman operator is a composition of translation and mixing

distributions for the next state, it implies that a function class H must be closed
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under translation and mixture. However, when considering the representation of

infinite-dimensional distributions using a finite number of representations, it is

not trivial that the mixture of distributions can also be represented with the

same number of representations. For example, while a Gaussian distribution can

be represented using two parameters (µ, σ2), a mixture of K Gaussians generally

requires 2K representations.

To avoid the issue of closedness under mixture, both previous studies assumed

a discretized reward MDP where all outcomes of the return distribution are

able to discretized into an uniform grid of finite points. Unfortunately, the

approximation error introduced by the discretization is not negligible when it

comes to regret. This is because model misspecification, which is the error when

the model fails to represent the target, typically leads to linear regret.

Definition 4.3.8 (Model Misspecification in distBC). For a given distribution
class H which is the finite-dimensional subspace of the space of all distribution
F∞, we call ζ the misspecification error

ζ := inf
fη̄∈H

sup
(s,a)∈S×A

∥fη̄(s, a)− (Brh)#[Phη̄](s, a)∥

for any η̄ : S →P([0, H]) and h ∈ [H].

Note that ζ is strictly positive unless the function approximator fη̄ can

represent any distribution in the finite-dimensional subspace H generated by

translation and mixture. In a classical linear bandit setting [108], a lower bound

with misspecification error ζ is known to yield linear regret Ω(ζK). Therefore,

redefining Bellman Completeness within the infinite-dimensional distribution

space is not appropriate, as it either imposes strong constraints on the MDP

structure or leads to linear regret. To circumvent model misspecification, we

revisit the distributional BC through the statistical functional lens. We propose

a novel framework that matches a finite number of statistical functionals to the

target, rather than the entire distribution itself.
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4.4 SF-LSVI: Statistical Functional Least Squares Value
Iteration

In this section, we propose SF-LSVI for distRL framework with general value

function approximation. Leveraging the result from Theorem 4.3.6, we introduce

a moment least square regression. This allows us to capture a finite set of moment

information from the distribution, which can be unbiasedly estimated, thereby

leading to the truncated moment problem [84, 89]. Unlike previous work [21, 100]

that estimates in infinite-dimensional distribution spaces, our method enables to

estimate distribution unbiasedly in finite-dimensional embedding spaces without

misspecification error.

Algorithm 3 Statistical Functional Least Squares Value Iteration (SF-LSVI)

Input: failure probability δ ∈ (0, 1) and the number of episodes
K

1: for episode k = 1, 2, . . . ,K do
2: Receive initial state sk1
3: Initialize ψ1:N (η̄

k
H+1(·))← 0N

4: for step h = H,H − 1, . . . , 1 do

5: Dkh ←
{
sτh′ , a

τ
h′ , ψ1:N

(
(Brτ

h′
)#η̄

k
h+1(s

τ
h′+1)

)}
(τ,h′)∈[k−1]×[H]

// Data collection
6: f̃kh,η̄ ← argminf∈FN ∥f∥Dkh

// Distribution Estimation
7: bkh(·, ·)← w(1)((FN )kh, ·, ·)
8: Qkh(·, ·)← min{(f̃kh,η̄)(1)(·, ·) + bkh(·, ·), H}
9: πkh(·) = argmaxa∈AQ

k
h(·, a) , V k

h (·) = Qkh(·, πkh(·))
// Optimistic planning

10: ψ1

(
ηkh(·, ·)

)
← Qkh(·, ·)

11: ψ2:N

(
ηkh(·, ·)

)
←
(
min{(f̃kh,η̄)(n)(·, ·), H}

)
n∈[2:N ]

12: ψ1

(
η̄kh(·)

)
← V k

h (·), ψ2:N

(
η̄kh(·)

)
← ψ1:N

(
ηkh(·, πkh(·))

)
n∈[2:N ]

13: for h = 1, 2, . . . ,H do
14: Take action akh ← πkh(s

k
h)

15: Observe reward rkh(s
k
h, a

k
h) and get next state skh+1.
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Overview. At the beginning of episode k ∈ [K], we maintain all previous

samples {(sτh′ , aτh′ , rτh′)}(τ,h′)∈[k−1]×[H] and initialize a sketch ψ1:N (η̄kH+1(·)) = 0N .

For each step h = H, . . . , 1, we compute the normalized sample moments of

target distribution {(Brτ
h′
)#η̄

k
h+1(s

τ
h′+1)}h′∈[H] with the help of binomial theorem,

ψn

(
(Brτ

h′
)#η̄h(s

τ
h′+1)

)
:=

E[(Z̄kh+1(s
τ
h′+1) + rτh′)

n]

Hn−1

=

∑n
n′=0H

n′
ψn′

(
η̄h(s

τ
h′+1)

)
(rτh′)

n−n′

Hn−1

and iteratively solve the N -moment least squares regression

f̃kh,η̄ ← argmin
f∈F

k−1∑
τ=1

H∑
h′=1

( N∑
n=1

f (n)(sτh′ , a
τ
h′)− ψn

(
(Brτ

h′
)#η̄

k
h+1(s

τ
h′+1)

))2
based on the dataset Dkh which contains the sketch of temporal target distri-

bution ψ1:N

(
(Brτ

h′
)#η̄

k
h+1(s

τ
h′+1)

)
. Then we define Qkh(·, ·) = min{(f̃kh,η̄)(1)(·, ·) +

bkh(·, ·), H} and choose the greedy policy πkh(·) with respect to Qkh. Next, we

update all N normalized moments of Q-distribution ψ1:N

(
ηhk (·, ·)

)
and V -

distribution ψ1:N

(
η̄hk (·)

)
. We repeat the procedure until all the K episodes

are completed.

Remark 4.4.1. For an optimistic planning, we define the bonus function as the
width function bkh(s, a) := wkh((FN )kh, s, a) where (FN )kh denotes a confidence
region at step h, episode k. When F is a linear function class, the width function
can be evaluated by simply computing the maximal distance of weight vector. For
a general function class F , computing the width function requires to solve a set-
constrained optimization problem, which is known as NP-hard [33]. However, a
width function is computed simply for optimistic exploration, and approximation
errors are known to have a small effect on regret [1]. We leave the study of
computationally efficient algorithms for the width function as a promising future
work, and replace with one of the numerical approximations mentioned above.

4.5 Theoretical Analysis

In this section, we provide the theoretical guarantees for SF-LSVI under Assump-

tion 4.3.7. Applying proof techniques from Wang et al. [101] and extending the
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result to a statistical functional lens, we generalize eluder dimension [83] to the

vector-valued function, which has been widely used in RL literatures [6, 49, 101]

to measure the complexity of learning with the function approximators.

Definition 4.5.1 (ϵ-dependent, ϵ-independent, Eluder dimension for vector–
valued function). Let ϵ ≥ 0 and Z = {(si, ai)}ni=1 ⊆ S × A be a sequence of
state-action pairs.

• A state-action pair (s, a) ∈ S × A is ϵ-dependent on Z with respect
to FN if ∥f − g∥Z ≤ ϵ for any vector-valued function f, g ∈ FN , then
|f (1)(s, a)− g(1)(s, a)| ≤ ϵ.

• An (s, a) is ϵ-independent on Z with respect to FN if (s, a) is not
ϵ-dependent on Z.

• The ϵ-eluder dimension dimE(FN , ϵ) of a vector-valued function class
FN is the length of the longest sequence of elements in S ×A such that,
for some ϵ′ ≥ ϵ, every element is ϵ′-independent on its predecessors.

We assume that the function class FN and state-action space S ×A have

bounded covering numbers.

Assumption 4.5.2 (Covering number). For any ϵ > 0, the following holds:

• there exists an ϵ-cover C(FN , ϵ) ⊆ FN with size |C(FN , ϵ)| ≤ N (FN , ϵ),
such that for any g ∈ FN , there exists g′ ∈ C(FN , ϵ) with ∥g − g′∥∞,1 ≤ ϵ.

• there exists an ϵ-cover C(S ×A, ϵ) with size |C(S ×A, ϵ)| ≤ N (S ×A, ϵ),
such that for any (s, a) ∈ S × A, there exists (s′, a′) ∈ C(S × A, ϵ) with
maxf∈F |f(s, a)− f(s′, a′)| ≤ ϵ

The following two lemmas give confidence bounds on the sum of the l2 norms

of all normalized moments.

Lemma 4.5.3 (Single Step Optimization Error). Consider a fixed k ∈ [K] and
a fixed h ∈ [H]. Let Zkh = {(sτh, aτh)}τ∈[k−1] be a state-action pairs and its dataset

Dkh,η̄ =
{(
sτh, a

τ
h, ψ1:N

(
(Bτrh′ )#η̄(s

τ
h′+1)

))}
τ∈[k−1]

for any η̄ : S → P([0, H]).

Define f̃kh,η̄ = argminf∈FN ∥f∥2Dkh,η̄
. For any η̄ and δ ∈ (0, 1), there is an event
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E(η̄, δ) such that conditioned on E(η̄, δ), with probability at least 1− δ, for any
η̄′ : S →P([0, H]) with ∥ψ1:N (η̄

′)− ψ1:N (η̄)∥∞,1 ≤ 1/T ,we have∥∥∥f̃h,η̄′(·, ·)− ψ1:N

(
(Br(·,·))#[Pη̄′](·, ·)

)∥∥∥
Zkh

≤ c′
(
N

1
2H
√

log(1/δ) + logN (FN , 1/T )
)

for some constant c′ > 0.

Due to the definition of Bellman unbiasedness, we remark that moment

sketch has a corresponding vector-valued estimator ϕψ1:N
as an identity and

leads to a concentration results as the sampled sketches forms a martingale

with respect to the filtration Fτh induced by the history of {(sτh, aτh)}τ∈[k−1] (i.e.,

E
[
ψ1:N

(
(Brh)#η̄(sτh)

)∣∣∣Fτh] = ψ1:N

(
(Brh)#[Phη̄](sτh, aτh)

)
).

Another notable aspect in Lemma 4.5.3 is using normalized moments

E[Zn]/Hn−1 instead of moments E[Zn], as it reduces the size of the confi-

dence region from O(HN ) to O(
√
N). This adjustment is akin to scaling the

optimization function in multi-objective optimization to treat each objective

equally, which effectively prevents the model from favoring objectives with larger

scales.

Lemma 4.5.4 (Confidence Region). Let (FN )kh = {f ∈ FN |∥f − f̃kh,η̄∥2Zkh
≤

β(FN , δ)}, where

β(FN , δ) ≥ c′ ·NH2(log(T/δ) + logN (FN , 1/T ))

for some constant c′ > 0. Then with probability at least 1− δ/2, for all k, h ∈
[K]× [H], we have

ψn

(
(Brh(·,·))#[Phη̄

k
h+1](·, ·)

)
∈ (FN )kh

Lemma 4.5.4 guarantees that the sequence of moments from the target

distribution ψ1:N

(
(Brh(·,·))#[Phη̄

k
h+1](·, ·)

)
lies in the confidence region (FN )kh

with high probability. Supported by the aforementioned lemma, we can further
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guarantee that all Q-functions are optimistically estimated with high probability

and derive our final result.

Theorem 4.5.5. Under Assumption 4.3.7, with probability at least 1 − δ,
SF-LSVI achieves a regret bound of

Reg(K) ≤ 2HdimE(FN , 1/T ) + 4H
√
KH log(1/δ)

Under weaker structural assumptions, we show that SF-LSVI enjoys near-

optimal regret bound of order Õ(dEH
3
2

√
K), which is

√
H better than the state-

of-the-art distRL algorithm V-EST-LSR [21]. For the linear MDP setting, we

have dE = Õ(d) and thus SF-LSVI achieves a tight regret bound as Õ(
√
d2H3K)

which matches a lower bound Ω(
√
d2H3K) [114]. In our analysis, we highlight

two main technical novelties which significantly reduces the degree of regret in

distRL framework;

1. We refine previous lemma of Osband et al. [74] and Wang et al. [101] to

remove the dependency of β(FN , 1/δ) (See Appendix B.4.4), ensuring that

regret bound depends only on the pre-defined function class, not on the

number of moment extracted.

2. As shown in Table 5.1, we define the eluder dimension dE in a finite-

dimensional embedding space FN , while other methods rely on an infinite-

dimensional distribution space H ⊆ F∞.

4.6 Summary

This chapter addresses the fundamental challenge of statistical efficiency in

Distributional Reinforcement Learning when combined with general value func-

tion approximation. Prior work introduced the concept of Bellman closedness;

however, it fails to guarantee that statistical functionals can be updated without

bias from finite samples in online learning settings. To resolve this, we propose
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the novel concept of Bellman Unbiasedness. This concept precisely characterizes

which statistical functionals are both preserved under Bellman updates and

unbiasedly estimable from a finite number of samples. Our analysis theoretically

demonstrates that only the family of exponential-polynomial functional satisfies

these two necessary properties. Based on this insight, we design the Statistical

Functional Least-Squares Value Iteration (SF-LSVI) algorithm, which is the

first theoretically efficient DistRL algorithm capable of handling general value

function approximation. The SF-LSVI algorithm achieves a tight regret bound

of Õ(dEH
3
2

√
K), which represents a significant improvement over previous

theoretical results.
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Chapter 5

Policy-labeled Preference Learning:
Is Preference Enough for RLHF?

Preference-based Reinforcement Learning (PbRL), a branch of RLHF, focuses

on learning optimal policies directly from human preferences, mitigating the

difficulty of crafting explicit, numerical rewards. Recent advancements, notably

Direct Preference Optimization (DPO) [77], simplify this process by directly

optimizing the policy based on preferences, bypassing the need for an explicit

reward model. While DPO has shown strong performance in domains like LLM

fine-tuning, its underlying assumptions are largely shaped by deterministic

environments. However, in standard RL settings, state transitions involve en-

vironmental stochasticity, introducing inherent uncertainty that complicates

policy optimization and inference.

This contrast highlights a key limitation when applying DPO to general

RL problems. We found that DPO’s framework implicityly assumes that the

observed data was generated by the optimal policy, creating a likelihood mismatch

that is exacerbated by environmental randomness. Furthermore, this challenge
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is critical in offline RL, where the pre-collected datasets often originate from

diverse, unlabelled policies, making it difficult to distinguish whether outcome

quality stems from policy suboptimality or external stochasticity. This leads to

the fundamental question:

Can preference data generated by diverse policies sufficiently guide sequential

decision-making, or is additional information required?

To address this, we propose Policy-labeled Preference Learning (PPL), a

novel RLHF framework that leverages regret-based preference modeling while

explicitly labeling the behavior policy. PPL incorporates policy information

directly into the learning process to disentangle the effects of environmental

stochasticity and behavior policy suboptimality. We provide theoretical insights

by defining a reward equivalence class and deriving a bijective mapping that

allows regret to be expressed as a uniquely defined function of the optimal policy.

We further introduce contrastive KL regularization for stable policy alignment.

Empirically, PPL is evaluated on homogeneous and heterogeneous offline datasets

in the MetaWorld environment, demonstrating superior performance in policy

alignment compared to conventional preference-based methods.

5.1 Preliminaries

Maximum Entropy Framework. We define the MDP asM = (S,A,P, r, γ)

characterized by state space S, action space A, transition kernels P which

represents the probability of the next state s′ given the current state s ∈ S

and action a ∈ A, underlying reward r ∈ [rmin, rmax], and discount factor

γ. For notational simplicity, we denote the expectation over trajectories τ =

(s0, a0, s1, a1, · · · ) generated by a policy π and the transition kernel P as Eτ∼Pπ [·].

The MaxEnt framework provides an optimal policy which not only maximizes
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the expected cumulative return, but also the entropy for each visited state:

π∗MaxEnt = argmax
π

Eτ∼Pπ
[∑
t≥0

γt(r(st, at) + αHπ(·|st))
]
,

where Hπ(·|s) = −Eπ[log π(·|s)] is the entropy of policy π at state s. Here,

α is a temperature hyperparameter that determine the relative importance of

entropy and reward. For clarity, we say π∗MaxEnt as α-optimal. In addition, soft

Q-function Qπ(s, a) is defined as the expected cumulative return augmented by

an entropy terms, expressed as;

Qπ(s, a) = r(s, a) + Eτ∼Pπ
[∑
t>0

γt(r(st, at) + αHπ(·|st))
]
.

Analogously, we can derive soft value function V π(s) and soft Bellman

equation as follows:

V π(s) = Ea∼π[Qπ(s, a)− α log π(a|s)],

Qπ(s, a) = r(s, a) + γEs′∼P

[
V π(s′)]

]
for all state-action pairs (s, a) ∈ S × A. Note that the interpretation of the

value function is modified by involving the entropy term in the MaxEntRL,

i.e., V π(s) ̸= Eπ[Qπ(s, a)]. For an α-optimal policy π∗, Ziebart [117] derived the

relationship between the optimal policy and optimal soft Q-function Qπ
∗
:

π∗(a|s) = exp
(
α−1(Qπ

∗
(s, a)− V π∗

(s))
)
,

V π∗
(s) = α log

∫
a∈A

exp
(
α−1Qπ

∗
(s, a)da

)
.

5.1.1 Preference-based Reinforcement Learning

Designing a reward function that accurately aligns with human behaviors is

inherently challenging. To address this, PbRL focuses on learning the optimal

policy directly from human preferences rather than relying on predefined rewards.
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Table 5.1: Comparison for different preference models under PbRL framework.

Algorithm Score Function Meaning

PEBBLE

[58]
rψ(st, at) reward

DPO

[77]
log πψ(y|s)/πref(y|s) relative likelihood

DPPO

[4]
−Ea∼πψ(·|st)[∥a− at∥2] action distance

CPL

[44]
Qπψ(st, at)− V πψ(st) optimal advantage

PPL

[Ours]
−(V πψ(st)−Qπ(st, at)) regret

In this context, we adopt a reward-free MDPM\r within the MaxEnt framework.

We define a segment ζ = (s0, a0, . . . , sk, ak) as a sequence sampled from a dataset

D. Specifically, human annotators or AI systems are tasked with comparing pairs

of trajectory segments (ζ+, ζ−), where ζ+ is preferred over ζ− (i.e., ζ+ ≻ ζ−).

Score-based Preference Model. Score-based preference model is a natural

generalization of RLHF for modeling human preferences through score functions,

instead of partial sum of rewards [58]. This approach extends the Bradley-Terry

model [16], where pairwise comparisons are used to infer relative preferences, by

introducing a score function that evaluates all observed state-action pairs within

a segment. The preference model then assigns probabilities proportional to the

sum of these scores, aligning with the Bradley-Terry framework. To implement

the preference model using a neural network, the score function is parametrized

as Sψ, and the model is trained by minimizing the cross-entropy loss between

its predictions and the preference labels derived from the dataset D, as follows:

PSψ [ζ
+ ≻ ζ−] = σ

(∑
t≥0

Sψ(s
+
t , a

+
t )− Sψ(s

−
t , a

−
t )
)
,
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Figure 5.1: Visualization of 5000 samples in Bin-Picking-v2 environment.
While the ground-truth reward (left) is sparse and mainly provided upon
task completion, regret (right) is more evenly distributed across all timesteps,
making it a more informative score function for partial trajectory evaluation.

L(Sψ;D) = −E(ζ+,ζ−)∼D

[
logPSψ [ζ

+ ≻ ζ−]
]
,

where σ(x) = 1/(1 + e−x) and each (s+t , a
+
t ) and (s−t , a

−
t ) is the t-th state and

action of preferred segment ζ+ and less preferred segment ζ−, respectively. For

notational simplicity, we abbreviate E(ζ+,ζ−)∼D as ED.

Although it is unclear how humans evaluate their preferences, preference

models can be improved to better align with human judgment by refining them

based on intuitive examples. If the score function does not align with human

preference evaluation, the model may produce counterintuitive outcomes. For

example, Knox et al. [55] demonstrated that using the partial sum of rewards as

a score function overlooks a critical issue in sparse reward MDPs: all segments

that fail to reach the goal are treated as equally preferable, regardless of their

contributions.

As shown in Figure 5.1, sparse reward MDPs provide little feedback for the

states that do not reach the terminal goal, leading to meaningless comparison

of the preferences in the early- and mid-stage segments based solely on return

sums. In contrast, regret is more evenly distributed across timesteps, making
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it a more effective score for comparing segment preferences regardless of their

position in the trajectory. This highlights the importance of modeling preference

with the score function that aligns with human intuition. Various approaches to

designing such score functions have been proposed, as summarized in Table 5.1.

Optimal Advantage-based Preference Model. Hejna et al. [44] proposed

Contrastive Preference Learning (CPL), which is based on an optimal advantage-

based preference model [55], treating as a regret-based preference model. The

CPL score is defined as the difference between the value of the action taken and

the average value under the optimal policy, (i.e., Aπ∗(st, at) := Qπ
∗
(st, at) −

V π∗
(st) = α log π∗(at|st).) Leveraging the relationship between the optimal

advantage and the optimal policy within the MaxEnt framework, their objective

can be reformulated into a policy-based expression, enabling the optimal policy

to be learned directly without relying on reward:

LCPL(λ)(πψ;D) = −αED

[
log σ

(∑
t≥0

log πψ(a
+
t |s

+
t )−λ log πψ(a

−
t |s

−
t )
)]
. (5.1)

However, the standard score-based preference loss is convex but not strictly

convex, leading to the existence of multiple optimal solutions. Hejna et al. [44]

identified that the shift-invariance property of the loss function (i.e., PS(πψ)+C =

PS(πψ)) causes out-of-distribution actions to be overly weighted, deteriorating

learning performance. To mitigate this issue, they introduced an asymmetric

regularizer λ, which reduces the gradient weight on less preferred actions,

breaking the inherent symmetry and stabilizing the learning process.

5.2 Policy-labeled Preference Learning

This section introduces the regret-based preference model and its distinctions

from prior work, with a focus on the issue of likelihood mismatch, where sampled
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Likelihood
matched

Policy-labeled Preference Learning

Policy-labeled 
Dataset

Contrastive KL
Regularization

Figure 5.2: Unlike existing DPO algorithms, PPL aligns segment likelihoods by
incorporating behavior policies. It reweights gradients based on closeness to the
optimal policy, forming a contrastive learning framework.

segments are misinterpreted as optimal, leading to suboptimal learning. To

address this, we propose Policy-labeled Preference Learning (PPL), which

employs a regret-based model to accurately estimate segment likelihoods. Finally,

we present theoretical results derived from the PPL framework.

5.2.1 Is Preference Enough for RLHF?

Negative Regret vs Optimal Advantage. In prior work, Hejna et al.

[44] utilized the optimal advantage as the score in CPL to introduce a regret-

based preference model. While they presented these two concepts as equivalent,

they differ significantly in their precise definitions and implications. Optimal

advantage refers to the relative benefit of taking a specific action a under the

optimal policy π∗ (i.e., Qπ
∗
(s, a)−V π∗

(s)). In contrast, negative regret captures

the performance difference between the behavior policy π and the optimal policy

π∗ (i.e., Qπ(s, a) − V π∗
(s)). The key difference between these concepts lies in

whether the behavior policy is incorporated into the score.

From a perspective of regret, the optimal advantage disregards the source

of the trajectories and evaluates the actions taken solely based on Qπ
∗
. Con-

sequently, it implicitly treats all trajectories as if they were generated by the

optimal policy. This raises an important question: what impact does this as-
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Ground-Truth MDP Estimated MDP 
without policy label

Figure 5.3: Illustration of the likelihood mismatch problem. Although the behav-
ior policy π differs from the optimal policy π∗, the learning process incorrectly
assumes all data is generated by π∗. As a result, while π∗ prefers s1, this mis-
interpretation leads to the incorrect conclusion that s2 is preferred, causing
suboptimal learning outcomes.

sumption – treating all behavior polices as optimal – have on the regret-based

learning process?

Likelihood Mismatch. Likelihood mismatch occurs when outcome differences

between two segments, which actually stem from behavior policy differences,

are mistakenly attributed to environmental stochasticity. This misinterpretation

leads to incorrect likelihood assignments. Figure 5.3 illustrates this issue in an

offline setting where offline data from both a suboptimal policy π and an optimal

policy π∗ lacks explicit policy labels. In this scenario, all data is mistakenly

assumed to be generated by the optimal policy π∗, leading to misinterpretations

during learning.

To understand how preference labels are assigned in this setting, let us first

consider the left-side figure. The red trajectory, generated by the suboptimal

policy π, assigns a higher score (+10) to s2, making it appear more preferable

than s1. In contrast, the black trajectory, generated by the optimal policy π∗,
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assigns a higher score (+20) to s1, leading to the opposite preference. These

conflicting results can be properly distinguished when policy labels are available,

allowing the model to infer the suboptimality of π by evaluating preferences

separately for each policy.

Now consider the right-side Figure 5.3, where the same data is used but

without policy labels. Since all data is incorrectly assumed to originate from

π∗, the model observes contradictory outcomes—s2 being preferred in one case

and s1 in another—despite assuming a single policy. Lacking policy labels, the

model misinterprets this discrepancy as environmental stochasticity rather than

differences in policies, distorting the learned MDP and leading to incorrect

likelihood estimates for trajectories. To mitigate this issue, it is crucial to

explicitly track and incorporate the behavior policy π for each segment, ensuring

accurate interpretation and proper differentiation of feedback. Thus, replacing

optimal advantage with regret, which reflects the suboptimality of the behavior

policy, provides a principled solution.

Regret-based Model Requires the Behavior Policy. In essence, regret

quantifies how much better we could have done if we had followed the optimal

policy instead of the behavior policy. A larger regret indicates that the behavior

policy is significantly less efficient compared to the optimal policy. We remark

that the regret is the difference between the expected return under optimal

policy and the achieved return under behavior policy. Based on the conventional

definition of regret, we reformulate negative regret in a policy-based form within
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the MaxEnt framework:

− Regππ∗(st, at)

:= − V π∗
(st)︸ ︷︷ ︸

expected return under π∗

+ Qπ(st, at)︸ ︷︷ ︸
achieved return under π

(5.2)

(Thm 5.2.4)
= α

(
log π∗(at|st)︸ ︷︷ ︸

increase likelihood

− D̄KL

(
π||π∗; st, at

)︸ ︷︷ ︸
decrease sequential forward KL

)
. (5.3)

In summary, the regret for the preferred segment can be decomposed into

two components: First, it increases the likelihood of actions taken in preferred

segments, aligning the behavior policy with human preferences. Second, it reduces

the sequential forward KL divergence, correcting for likelihood mismatch by

considering long-term differences between the behavior policy and the optimal

policy. Analogously, for the less preferred segment, the regret exhibits the

opposite tendencies. Based on Equation (5.3), our objective can be formulated

as follows:

LPPL(πψ;D) = −ED

[
log σ

(
−
∑
t≥0

Regπ
+

πψ
(s+t , a

+
t )− Regπ

−
πψ

(s−t , a
−
t )

)]
where the policy label for the preferred and less preferred segments are denoted

as π+ and π−, respectively. The detailed derivation of this formulation will be

introduced in the next section and Appendix C.2.1.

5.2.2 Theoretical Analysis

Consider a triplet (π∗, (ζ+, π+), (ζ−, π−)), where the segments ζ+ and ζ− are

generated by policies π+ and π−, respectively. The (unknown) optimal policy π∗

serves as the basis for determining the underlying reward and ensuring consistent

preferences. During the learning process, we assume that each segment is labeled

by its behavior policy. Under this setup, the policy-labeled preference model is

expressed as:
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P
(π+,π−)
π∗ = σ

(∑
t≥0

[
V π∗

(s−t )− V π∗
(s+t )

]
︸ ︷︷ ︸

At(π∗)

+
[
Qπ

+
(s+t , a

+
t )−Qπ

−
(s−t , a

−
t )
]

︸ ︷︷ ︸
Bt(π∗,π+,π−)

)
.

This expression is decomposed into two components: (i) At(π
∗), which de-

pends solely on Qπ
∗
(note that V π∗

(s) = Ea∼π∗ [Qπ
∗
(s, a)] + αHπ∗

(·|s)), and (ii)

Bt(π
∗, π+, π−), which involves Qπ

+
and Qπ

−
.

The main theoretical challenge in performing a direct policy update is

expressing the soft optimal Q-function and soft Q-function of a given policy

π in closed-form with respect to the optimal policy π∗. Before proceeding, we

introduce the concept of equivalence classes within the MaxEnt framework to

analyze the reward structures that make a given policy optimal.

Definition 5.2.1. The set of reward functions where π∗ is α-optimal is defined
as (α, π∗)-equivalence class of reward function, denoted by Rα,π∗ . For every
policy π, the set of Qπ-function generated by any reward function rα,π∗ ∈ Rα,π∗

is defined as the (α, π∗)-equivalence class of Qπ-function, denoted by Qπα,π∗ .

Definition 5.2.1 indicates that a reward function class R or a Qπ-function

class Qπ can be partitioned based on the α-optimal policy π∗. For notational

simplicity, we denote the ground truth reward function corresponding to the

α-optimal policy π∗ as r∗ and the Qπ-function induced by r∗ as Qπ∗ , simplifying

the subscript to ∗.

Lemma 5.2.2 (Structural Condition for α-optimality). A reward function
and a soft optimal Q-function where π∗(·|s) is α-optimal have a one-to-one
correspondence with a state-dependent function β : S → R, defined as follows:

Rα,π∗ = {r∗(s, a) = α log π∗(a|s) + β(s)− γEP[β(s
′)]}

Qπ∗
α,π∗ = {Qπ∗

∗ (s, a) = α log π∗(a|s) + β(s)}

for all s ∈ S and a ∈ A.

Lemma 5.2.2 demonstrates that the (α, π∗)-equivalence class of soft optimal

Q-functions can be uniquely expressed as the sum of a log-probability term,
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α log π∗(a|s), and a state-dependent function, β(s). This result improves upon

the prior lemma of Rafailov et al. [77], which established only a surjection from

reward functions to optimal policies. By contrast, we ensure a bijection, rigorously

defining the equivalence class of reward functions. Furthermore, Lemma 5.2.2

refines the concept of policy invariance introduced by Gleave et al. [40], Ng

et al. [69] by specifying that the action-dependent term must be α log π∗(a|s) to

guarantee π∗ is the α-optimal policy.

Lemma 5.2.3 (Unique Fixed Point of Soft Bellman π-operator). Let π∗ be
α-optimal. For a given policy π and Q-function QπA ∈ Qπ for any (s, a) ∈ S ×A,
define the Bellman π-operator T π∗ : Qπ → Qπ where

T π∗ QπA(s, a) := Qπ
∗

∗ (s, a)− γEP

[
α
(
Hπ∗

(·|s′)−Hπ(·|s′)
)

+Eπ∗ [Qπ
∗

∗ (s′, a′)]− Eπ[QπA(s′, a′)]
]
.

Then, T π∗ has a unique fixed point Qπ∗ .

Lemma 5.2.3 describes an operator that links the soft Q-function of a

given policy π to the optimal soft Q-function Qπ
∗

∗ , identifying Qπ∗ as its unique

fixed point. Notably, this relationship is established without requiring explicit

knowledge of the reward function r∗. From the novel design of the soft Bellman

π-operator, we now derive the following important theorem.

Theorem 5.2.4 (Policy Deviation Theorem). If a policy π∗ is α-optimal, then
for any policy π,

Qπ
∗

∗ (s, a)−Qπ∗ (s, a) = αD̄KL(π||π∗; s, a)

where the sequential forward KL divergence is defined as

D̄KL(π||π′; s, a) := Eτ∼Pπs,a

[∑
l>0

γlDKL(π(·|sl)||π′(·|sl))

]
.

Here, Pπs,a is the distribution of trajectories τ = (s0, a0, · · · , sl, al, · · · ) generated
by policy π and the transition P, starting at (s0, a0) = (s, a).
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Theorem 3.4 establishes that the difference between the soft Q-function of

any policy π and the optimal soft Q-function is constant and can be expressed

as the sequential forward KL divergence. Intuitively, D̄KL(π||π∗; s, a) represents

the discounted sum of the forward KL divergence between π and π∗ over the

states visited during a rollout starting from (s, a). This property is particularly

valuable, as it quantifies the performance gap using only π and π∗.

While related results were proposed by Shaikh et al. [87] and Zeng et al.

[110], their proofs were restricted to contextual bandits and token-level MDPs

with deterministic transitions, respectively. Moreover, their formulation depends

on a KL-regularized objective that explicitly incorporates a reference policy.

In contrast, Theorem 3.4, formulated within the MaxEnt framework, does not

require a reference policy to be well-defined, making it more broadly applicable.

Corollary 5.2.5. For a given (α, π∗) and a policy π, Regππ∗(·, ·) is uniquely
determined regardless of β(s).

Since regret is invariant to transformations of β(s), it does not require

additional variance reduction techniques [85] to ensure stable learning. As noted

in Lemma 5.2.2, any policy-invariant transformation can be expressed as a

combination of a state-dependent function β(s) and a scaled log-likelihood term

α log π(a|s), where α represents the temperature parameter in the MaxEnt

framework. Specifically, for any transformation of the reward function that

preserves the optimal policy, we can rewrite the modified reward as:

r(s, a) = α log π(a|s) + β(s).

This formulation extends the classical reward shaping result of Ng et al.

[69] by explicitly incorporating the policy-dependent term α log π(a|s), which

accounts for transformations in the likelihood space. This insight allows us to
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generalize policy-invariant transformations and directly integrate them into

preference-based learning objectives.

Using this representation, we can reformulate the sequential DPO objective

with a policy-invariant transformation as follows:

LDPO(β)(πψ;D)

= −ED

[
log σ

(∑
t≥0

{
log

πψ(a
+
t |s

+
t )

πref(a
+
t |s

+
t )

+ β(s+t )− γEs′t∼P(·|s+t ,a
+
t )
[β(s′t)]

}
−
{
log

πψ(a
−
t |s

−
t )

πref(a
−
t |s

−
t )

+ β(s+t )− γEs′t∼P(·|s−t ,a
−
t )[β(s

′
t)]
})]

. (5.4)

The existence of multiple objectives that preserve the optimal policy through

reward shaping has been explored in previous work, particularly in the variance

reduction schemes of policy gradient methods. Schulman et al. [85] introduced

the generalized advantage estimate (GAE) as a method to reduce the variance

of policy gradient estimates, effectively selecting an appropriate β(s) to improve

stability and efficiency in learning. Similarly, in Equation 5.4, the standard DPO

framework assumes β(s) = 0, but optimizing β(s) to minimize the variance of

gradient estimates could lead to more stable training.

In contrast, as shown in Equation C.2.1 on Appendix C.2.1, regret-based

formulations naturally eliminate β(s) by definition, avoiding the challenges

associated with policy-invariant transformations. This property ensures that

regret serves as a unique and well-defined objective function, making it inherently

robust without requiring explicit variance reduction techniques.

Corollary 5.2.6. Maximizing the MaxEnt objective with negative regret as the
reward is equivalent to minimizing the sequential forward KL divergence between
the learned policy and the behavior policy for each preferred state-action pair in
the dataset, i.e.,

argmax
πψ

(
Eζ+∼D[−Regπ

+

πψ
(s+, a+)− α log πψ(a

+|s+)]
)

≡ argmin
πψ

(
Eζ+∼D[D̄KL(π

+||πψ; s+, a+)]
)
. (5.5)
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Corollary 5.2.6 implies that regret-based RLHF operates by aggregating

behavior policies from preferred segments, aligning the learned policy toward

preferred actions. Notably, if all preferred segments are assumed to be generated

by the optimal policy, the formulation reduces to the standard CPL objective,

highlighting its connection to prior methods.

Proof. Consider a dataset D and a set of sampled preferred segments {ζ+i }Ni=1

which are generated by behavior policy π+i respectively. To avoid notation
ambiguity, we emphasize that the subscript i in this proof denotes the index
of each individual samples. When defining the reward function as the negative
regret, the optimal policy of Maxent objective π∗Reg can be reformulated as:

π∗Reg

:= argmax
πψ

( 1

N

N∑
i=1

[
− Reg

π+
i
πψ (s

+
i , a

+
i )− α log πψ(a

+
i |s

+
i )
])

= argmax
πψ

( 1

N

N∑
i=1

[
Q
π+
i
πψ (s

+
i , a

+
i )− V

πψ
πψ (s+i )− α log πψ(a

+
i |s

+
i )
])

= argmax
πψ

( 1

N

N∑
i=1

[
α log πψ(a

+
i |s

+
i )− αD̄KL(π||πψ; s+i , a

+
i )− α log πψ(a

+
i |s

+
i )
])

= argmin
πψ

( 1

N

N∑
i=1

D̄KL(π
+
i ||πψ; s

+
i , a

+
i )
)

■

Notably, the minimum is achieved if and only if πψ(a
+
i |s

+
i ) = π(a+i |s

+
i ) for

each i ∈ [N ]. This formulation demonstrates that maximizing the MaxEnt

objective with a regret-based reward is fundamentally equivalent to minimizing

the sequential forward KL divergence for each segment.

Discussion. The regret-based DPO framework can be reinterpreted as a

process that aggregates the behavior policies underlying the given dataset,

aligning the learned policy to preferred actions by reducing the sequential
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forward KL divergence. If, as assumed in CPL, the behavior policies of all

preferred segments in dataset D correspond to the optimal policy π∗ (or can be

constructed as such), then PPL is guaranteed to converge to the optimal policy.

However, in practical RLHF settings, such an assumption rarely holds. Unlike

standard reinforcement learning, where an agent maximizes a predefined reward

function, RLHF optimizes for policy alignment rather than absolute optimality.

In the DPO framework, the reward function is implicitly constructed to make

the aligned policy the optimal one within the given preference dataset. As a

result, the optimal policy under the learned reward function is already the policy

obtained through alignment, making it unnecessary to perform an additional

RL algorithm to reach the optimal policy.

To achieve further improvements, it is crucial to expand the dataset by

rolling out new policies and incorporating additional preference data. This

process enhances dataset coverage while enabling the learned reward function to

extrapolate more effectively. Without such iterative expansion, RLHF remains

constrained by the limitations of the static dataset, preventing meaningful policy

improvements beyond the scope of the initially collected preferences.

5.2.3 Practical Algorithm and Implementation Details

In this section, we present PPL, a practical algorithm that leverages the policy

label to solve the likelihood mismatch. Our setting follows the classical DPO, but

with the difference that we manage preference queries by labeling the behavior

policy for each trajectory in the dataset.

Pseudo-labels. In general RL settings, the behavior policy that generated

a trajectory is typically known or accessible, making policy labeling relatively

inexpensive. However, in offline datasets, the behavior policy is often unknown.
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Algorithm 4 Policy-labeled Preference Learning (PPL)

Input: number of queries N , trajectory dataset E , minibatch size
D

1: Initialize policy parameters ψ
2: for n = 1, · · · , N do
3: Sample ζ, ζ ′ ∼ E
4: if policy label π(at|st), π(a′t|s′t) unknown then
5: π(·|st)← δat π(·|s′t)← δa′t
6: end if
7: Label the behavior policy p = (π, π′)
8: Instruct the preference label y = (y(0), y(1))
9: Store preference D ← D ∪ {(ζ, ζ ′, y, p)}

10: end for
// Create Policy-labeled Preference Queries

11: for t = 1 to T do
12: Sample minibatch {(ζ, ζ ′, y, p)d}Dd=1 ∼ D
13: ψ ← argminψ LPPL(πψ;D)
14: end for

// Policy Learning

To address this, we assign pseudo-labels as an alternative, assuming each segment

was generated by a deterministic policy that executed the observed actions.

Contrastive KL Regularization. As previously discussed, the regret is

decomposed into two components. In particular, the sequential KL divergence

plays a pivotal role in aligning the learned policy with the preferred policy while

diverging from the less preferred policy:

−
∑
t≥0

Regπ
+

πψ
(s+t , a

+
t )− Regπ

−
πψ

(s−t , a
−
t )

= α
∑
t≥0

(
log

πψ(a
+
t |s

+
t )

πψ(a
−
t |s

−
t )
−D̄KL(π

+||πψ; s+t , a
+
t ) + D̄KL(π

−||πψ; s−t , a
−
t )
]

︸ ︷︷ ︸
contrastive KL regularization R(πψ ; π+,π−)

)
.

We call this term as contrastive KL regularization, which requires performing

rollouts for each (st, at) with respect to π+ or π−. This regularization term
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Table 5.2: Success rates of all methods across six tasks on the MetaWorld
benchmark on different datasets. Each score is reported with the maximum
average performance across four seeds over 200 episode evaluation window.

Bin Picking Button Press Door Open Drawer Open Plate Slide Sweep Into

Homogeneous
Dense

SFT 39.7 ± 19.2 71.5 ± 3.3 48.0 ± 15.6 56.2 ± 1.8 64.8 ± 0.8 70.0 ± 6.5
P-IQL 62.0 ± 4.4 72.3 ± 1.0 47.7 ± 5.1 58.0 ± 5.7 70.5 ± 6.1 65.8 ± 1.3
CPL 22.7 ± 5.5 64.3 ± 1.4 29.0 ± 4.3 54.0 ± 4.3 65.5 ± 3.1 69.8 ± 3.3
PPL 83.5 ± 4.4 79.8 ± 4.8 39.3 ± 2.0 69.2 ± 5.5 64.7 ± 2.0 72.8 ± 4.8

Homogenous
Sparse

SFT 33.5 ± 5.4 67.4 ± 1.5 31.3 ± 2.1 54.9 ± 2.7 67.1 ± 3.7 78.3 ± 2.5
P-IQL 72.4 ± 6.6 74.5 ± 0.0 58.5 ± 1.4 51.4 ± 4.6 76.3 ± 1.6 79.0 ± 2.6
CPL 26.5 ± 1.0 63.7 ± 1.3 28.5 ± 5.8 50.1 ± 4.5 65.1 ± 2.8 72.9 ± 6.1
PPL 87.2 ± 3.5 87.3 ± 2.8 49.3 ± 6.5 68.5 ± 5.3 64.0 ± 6.4 73.9 ± 3.5

Heterogeneous
Dense

SFT 18.5 ± 23.8 63.7 ± 12.2 26.0 ± 12.5 32.0 ± 5.7 62.8 ± 1.6 53.0 ± 9.1
P-IQL 51.2 ± 5.3 62.5 ± 4.9 32.0 ± 3.5 41.8 ± 3.8 67.0 ± 3.0 59.3 ± 3.7
CPL 1.2 ± 0.8 49.7 ± 3.0 17.3 ± 2.5 26.0 ± 2.2 59.2 ± 7.7 51.2 ± 3.0
PPL 59.7 ± 18.6 73.8 ± 3.3 25.8 ± 2.0 58.5 ± 3.8 69.8 ± 2.3 57.3 ± 8.6

Heterogeneous
Sparse

SFT 12.2 ± 1.0 63.7 ± 4.7 17.8 ± 0.8 38.7 ± 3.0 70.7 ± 3.8 60.7 ± 2.5
P-IQL 48.0 ± 5.6 71.0 ± 6.6 44.1 ± 3.2 47.5 ± 3.0 72.0 ± 4.0 64.3 ± 1.0
CPL 18.0 ± 6.1 50.8 ± 0.8 18.5 ± 3.0 32.1 ± 1.6 67.3 ± 5.5 55.5 ± 3.3
PPL 83.8 ± 3.8 83.5 ± 1.8 34.3 ± 7.6 60.8 ± 7.3 71.2 ± 1.9 63.3 ± 4.2

ensures that the learned policy πψ aligns more closely with the preferred policy

π+ while pushing away from the less preferred policy π−.

In practice, implementing contrastive KL regularization can result in a

computational overhead, as it requires multiple rollouts with each state-action

pair as the initial point at every timestep until the terminal is reached. This

approach can also increase memory usage as it requires additional timesteps

outside of the sampled segment. To address these technical challenges, we

replace the discounted sum with an L-horizon undiscounted sum. We normalize

the contrastive KL regularization to balance their scale, and the process is

further simplified by reusing segments ζ+, ζ− as a single rollout of policy π+, π−,

respectively.

R(πψ; π+, π−) ≈
1

L

L∑
l=1

[
− log

π+(a+t+l|s
+
t+l)

πψ(a
+
t+l|s

+
t+l)

+ log
π−(a−t+l|s

−
t+l)

πψ(a
−
t+l|s

−
t+l)

]
.

Here, L corresponds to the step of look-ahead during rollouts. When L = 0,

the framework fully reduces to CPL, which does not account rollout for sequential
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planning. Another interesting observation is that if we assume the segments in

the offline dataset were generated by the reference policy (i.e., π+, π− = πref), the

framework recovers the original DPO formulation, i.e., forward KL-constrained

RLHF implicitly minimizes regret.

5.3 Experiments

In our experiments, we aim to answer the following questions: (1) Can PPL

effectively learn in offline settings composed of heterogeneous data generated by

diverse policies? (2) Does incorporating policy labels improve learning perfor-

mance? (3) Can PPL be effectively applied to online RLHF algorithm? A full

report for each question is provided in the Appendix C.5, C.6 and C.7.

5.3.1 Experimental Setup

For a fair comparison, we first evaluate the performance of PPL on six robotic

manipulation tasks in MetaWorld [107], using the same rollout data provided

by Hejna et al. [44]. Results from the reproducibility check are included in

Appendix C.4.3. To evaluate performance on offline datasets generated from

diverse policies, we aimed to follow CPL’s preference dataset generation procedure.

However, there are two key differences in our implementation of the critic. First,

we utilize raw rollout data without any trajectory truncation. Second, whereas

CPL applies a specific technique to reduce TD-error by re-training the critic

with all rollout data added to the replay buffer, we generated preference labels

without such retraining. As a result, our labels may be noisier than those in

CPL. Nevertheless, to ensure a fair comparison, all algorithms were trained using

the same set of labels. For further details, please see Appendix E.4.
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Baselines. We consider CPL as our primary baseline, where the key distinction

between PPL and CPL lies in whether the label of the behavior policy is utilized.

For additional baselines, we include supervised fine-tuning (SFT) and Preference-

based Implicit Q-Learning (P-IQL). Specifically, SFT first trains a policy via

behavior cloning on all preferred segments in the preference dataset. P-IQL [43]

is a reward-based RLHF algorithm that first learns a reward function from

preference data and then derives an optimal policy using the Implicit Q-Learning

(IQL) algorithm [56]. Notably, P-IQL is expected to achieve higher performance,

as it not only learns a policy but also simultaneously optimizes a reward function,

Q-function, and value function.

Implementation Details. To generate preference queries without human

supervision, we pretrain an SAC model as an oracle that achieves a 100% success

rate. Using this pretrained model as a critic, we uniformly sampled segments of

length 64 and assigned labels based on estimated regret. To evaluate performance

in heterogeneous datasets, we further construct an additional offline dataset by

rolling out suboptimal policies with 20% and 50% success rates and combining

them. For preference datasets, we conduct experiments under two settings:

Dense, where comparisons are made between all segment pairs, and Sparse,

where only one comparison is made per segment.

5.3.2 Can PPL be effectively trained on both homogeneous and
heterogeneous offline dataset?

In the previous works, the evaluation of offline datasets has been conducted

under homogeneous conditions. However, in practice, offline datasets are more

commonly generated by a multiple different policies. Thus, we investigate the

following question:

How would PPL and the baselines perform if the offline dataset were hetero-
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Figure 5.4: Distribution of returns in homogeneous vs heterogeneous offline
dataset in Button-Press-v2.

geneous?

To investigate this, we examine the distribution of segment returns for both

types of datasets, as shown in Figure 5.4. Compared to the homogeneous dataset,

the heterogeneous dataset includes rollout data from a policy with a 20% success

rate, leading to a higher density of lower-return segments.

In Table 5.2, we report the impact of diverse behavior policies on performance.

PPL consistently outperforms other methods across various dataset conditions

in the MetaWorld benchmark, particularly in challenging scenarios with pref-

erence sparsity and policy diversity. Interestingly, unlike baseline algorithms,

PPL achieves higher performance in Sparse settings compared to Dense settings.

This implies that PPL benefits more from datasets with broader state-action

coverage rather than relying on dense pairwise comparisons across all segments.

Furthermore, PPL exhibits greater robustness in heterogeneous datasets, outper-

forming or matching P-IQL despite utilizing only about 6.3% of its parameters.

This highlights PPL as an efficient algorithm that maintains strong performance

while incurring lower computational costs.
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Figure 5.5: Ablation on deterministic pseudo-labeling. We compare the average
performance of PPL and PPL-deterministic across six environments in MetaWorld.
The dashed line indicates the point where BC pretraining stops.

One possible explanation for CPL’s lower performance on our dataset is the

absence of the retraining technique to reduce TD-error—a method uniquely

applied within CPL and not commonly adopted in standard practice. However,

since all algorithms were trained using the same labels, we attribute this perfor-

mance gap primarily to CPL’s sensitivity to label noise. This sensitivity appears

to arise from an implicit assumption within CPL that all training trajectories

are generated by an optimal policy.

5.3.3 Does incorporating policy labels improve learning perfor-
mance?

In this experiment, we examine how the presence and accuracy of policy labels

affect performance. Since the offline dataset are fixed and behavior policies are

typically unknown, we ablate a pseudo-label setting, assuming each segment

was executed deterministically based on the observed actions. Specifically, we

introduce PPL-deterministic, where the behavior policy for each segment is

assumed to be fully deterministic (See Lines 4-5 of Algorithm 4). We then

compare its performance with PPL.

As shown in Figure 5.5, comparing PPL with CPL reveals that when behavior
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Figure 5.6: Online learning curves across five MetaWorld tasks, comparing PPL

and PEBBLE.

policy information is not incorporated into learning, distinguishing environmental

stochasticity from behavior policy suboptimality becomes more difficult, resulting

in a significant performance gap. As an alternative, using deterministic pseudo-

labels for training on offline data without policy labels proves to be a viable

approach in homogeneous datasets, causing only a slight performance drop.

However, in heterogeneous datasets, their effectiveness decreases, leading to a

substantial performance gap. This result suggests that as the dataset becomes

more diverse in behavior policies, incorporating policy labels into learning

becomes increasingly important.

5.3.4 Can PPL be effectively applied to an online RLHF algo-
rithm?

In the online setting, rollouts are directly executed, providing explicit access to

policy labels. Leveraging this advantage, we conducted experiments to evaluate

whether PPL can effectively serve as an online DPO algorithm. The experiments

were conducted from scratch, without any pretraining. Unlike the offline setting,

we did not apply the asymmetric regularizer in Eq. 5.1, as out-of-distribution
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issues were mitigated by the iterative data collection process. We used PEBBLE

[58] as an oracle because it employs a learned policy trained with unsupervised

pretraining, which accelerates learning. Further implementation details are

provided in Appendix C.4.5.

Figure 5.6 illustrates the average success rates across five MetaWorld tasks.

Notably, despite learning from scratch, the online version of PPL achieves per-

formance comparable to PEBBLE, which leverages unsupervised pretraining.

Furthermore, since PPL does not require learning a reward model or a critic,

it uses only 8.8% of the parameters compared to PEBBLE, yet still achieves

comparable performance. This demonstrates that PPL can serve as a highly

efficient online RLHF algorithm.

5.4 Summary

In this work, we introduced PPL, a novel DPO framework that incorporates infor-

mation from the behavior policy through regret-based modeling. We highlighted

the issue of likelihood mismatch and addressed it by proposing contrastive

KL regularization. Furthermore, we theoretically established that minimizing

regret is fundamentally equivalent to optimizing the forward KL-constrained

RLHF problem. Empirically, PPL demonstrated strong performance across offline

datasets containing rollouts from diverse policies, showcasing its robustness to

dataset variations. In online setting, policy labels can be obtained more easily

than in the offline case, and PPL effectively learned as an online DPO algorithm.

However, we observed that online RLHF method is quite sensitive to the sam-

pling of queries from preference data, suggesting that a more refined analysis is

needed for future research.
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Chapter 6

Conclusion

This dissertation advances the study of sequential decision-making under un-

certain human feedback by integrating distributional reinforcement learning

with a regret-based, human-aligned framework. To overcome the limitations of

conventional reinforcement learning, which relies on expectation-based updates

and explicitly defined rewards, we propose a unified approach that combines

two complementary perspectives.

From the distributional perspective, the proposed framework models un-

certainty and variability in returns at the level of full distributions, capturing

aspects of risk and diversity that expectation-based methods overlook. From the

human feedback perspective, it introduces a regret-based modeling paradigm

that interprets uncertain and heterogeneous human preferences as structured

feedback. By doing so, the agent can better understand human intent, reduce

bias in reward estimation, and learn stable, optimal policies aligned with human

objectives.

Building upon this foundation, we further develop a principled regret min-
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imization framework that provides theoretical guarantees on policy learning

efficiency. Through this formulation, regret quantifies the discrepancy between

learned and optimal behaviors, serving as a unifying measure that connects

human-aligned evaluation with algorithmic efficiency. Empirical results across

diverse and high-dimensional environments demonstrate that the proposed

algorithms achieve robust performance and faster convergence with fewer envi-

ronment interactions, validating both their theoretical soundness and practical

effectiveness.

6.1 Future Work

The findings of this dissertation offer valuable theoretical and practical insights

for advancing reinforcement learning from human feedback (RLHF). Despite

these contributions, several promising directions remain for future exploration.

First, while this work primarily considers feedback from a single annota-

tor, future research could investigate methods for aggregating and reconciling

heterogeneous feedback from multiple users. Such extensions are critical for

developing scalable and socially aligned agents that generalize across diverse

human populations.

Second, the current framework assumes that the agent’s actions do not

dynamically influence the user’s feedback model. A natural next step is to

explore interactive settings where human preferences evolve in response to

the agent’s behavior, requiring adaptive algorithms that jointly model human

learning and agent learning dynamics.

Finally, future research may extend this framework beyond pairwise pref-

erence feedback to encompass richer modalities of human supervision, such

as demonstrations, natural-language instructions, or process-level evaluations.

Integrating these feedback forms will enable the development of more versatile,
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interpretable, and trustworthy agents—furthering the broader goal of creating

human-centered artificial intelligence.
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Appendix A

Appendix of Chapter 3

A.1 Main Proof

A.1.1 Technical Lemma

Before proving our theoretical results, we present two inequalities for supremum

to clear the description.

1. sup
x∈X
|f(x) + g(x)| ≤ sup

x∈X
|f(x)|+ sup

x∈X
|g(x)|

2.
∣∣∣sup
x∈X

f(x)− sup
x′∈X

g(x′)
∣∣∣ ≤ sup

x,x′∈X
|f(x)− g(x′)|

Proof of 1. Since |f(x) + g(x)| ≤ |f(x)|+ |g(x)| holds for all x ∈ X,

sup
x∈X
|f(x) + g(x)| ≤ sup

x∈X
(|f(x)|+ |g(x)|)

≤ sup
x∈X
|f(x)|+ sup

x∈X
|g(x)|

■

Proof of 2. Since
∣∣∣∥a∥−∥b∥∣∣∣ ≤ ∥a− b∥ for any norm ∥ · ∥ and for a large enough
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M ,

sup
x,x′∈X

|f(x)− g(x′)| ≥ sup
x∈X
|f(x)− g(x)|

= sup
x∈X
|(f(x) +M)− (g(x) +M)|

≥
∣∣∣ sup
x∈X

(f(x) +M)− sup
x∈X

(g(x) +M)
∣∣∣

=
∣∣∣ sup
x∈X

f(x)− sup
x′∈X

g(x′)
∣∣∣

■

A.1.2 Proof of Theorem A.1.3

Theorem A.1.3. If ξt converges to 1 in probability on Ω, then Eτ ξt converges
to Eτ uniformly on Z for all s ∈ S and a ∈ A.

Proof. Recall that Z =
{
Z : S × A → P(R)

∣∣ E[|Z(s, a)|] ≤ Vmax,∀(s, a)
}
.

Then for any Z ∈ Z and ξ ∈ Ξ,

E[|τ ξZ|] ≤ Rmax + γ
Rmax

1− γ
=
Rmax

1− γ
= Vmax.

which implies PDBOO is closed in Z, i.e. τ ξZ ∈ Z for all ξ ∈ Ξ. Hence, for any
sequence ξt, Z

(n) = τ ξn:1Z ∈ Z for any n ≥ 0.
Since ξt converges to 1 in probability on Ω, there exists T such that for any

ϵ, δ > 0 and t > T ,

P(Ωt) := P
({

w ∈ Ω : sup
w∈Ω
|ξt(w)− 1| ≥ ϵ

})
≤ δ

For any Z ∈ Z, s ∈ S, a ∈ A, and t > T , by using Hölder’s inequality,

sup
Z∈Z

sup
s,a
|Eξt [Z(s, a)]− E[Z(s, a)]|

= sup
Z∈Z

sup
s,a

∣∣∣∣∫
w∈Ω

(1− ξt(w))Z(s, a, w)P(dw)
∣∣∣∣

= sup
Z∈Z

sup
s,a

∣∣∣ ∫
w∈Ωt

(1− ξt(w))Z(s, a, w)P(dw)

+

∫
w∈Ω\Ωt

(1− ξt(w))Z(s, a, w)P(dw)
∣∣∣

≤ P(Ωt) sup
w∈Ωt

|ξt(w)− 1| Vmax + P(Ω\Ωt) sup
w∈Ω\Ωt

|ξt(w)− 1| Vmax

≤ δ|Bξ − 1|Vmax + ϵVmax
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which implies that Eξt converges to E uniformly on Z for all s, a.

By using A.1.1, we can get the desired result.

sup
Z∈Z

sup
s,a
|E[τ ξtZ(s, a)]− E[τZ(s, a)]|

≤ sup
Z∈Z

sup
s,a
|E[τ ξtZ(s, a)]− Eξt [τ ξtZ(s, a)]|

+ sup
Z∈Z

sup
s,a
|Eξt [τ ξtZ(s, a)]− E[τZ(s, a)]|

≤ (δ|Bξ − 1|Vmax + ϵVmax)

+ γ sup
Z∈Z

sup
s,a

Es′
[∣∣∣sup

a′
Eξt [Z(s′, a′)]− sup

a′′
E[Z(s′, a′′)]

∣∣∣]
≤ (δ|Bξ − 1|Vmax + ϵVmax)

+ γ sup
Z∈Z

sup
s′,a′

∣∣Eξt [Z(s′, a′)]− E[Z(s′, a′)]
∣∣

≤ (δ|Bξ − 1|Vmax + ϵVmax) + γ(δ|Bξ − 1|Vmax + ϵVmax)

= (1 + γ)(δ|Bξ − 1|Vmax + ϵVmax).

■

A.1.3 Proof of Theorem 3.2.3

Theorem 3.2.3. Let ξn be sampled from Ū∆n(Z(n−1)) for every iteration. If

Assumption 3.2.2 holds, then the expectation of any composition of operators

Eτ ξn:1 converges, i.e. Eτ ξn:1 [Z]→ E[Z∗]

Moreover, the following bound holds,

sup
s,a

∣∣∣E[Z(n)(s, a)]− E[Z∗(s, a)]
∣∣∣

≤
∞∑
k=n

(
2γk−1Vmax + 2

k∑
i=1

γi(∆k+2−i +∆k+1−i)

)
.

Proof. We denote a∗i (ξn) = argmax
a′

Eξn [Z
(n−1)
i (s′, a′)] as the greedy action of

Z
(n−1)
i under perturbation ξn. Also, we denote sup

s,a
| · | which is the supremum

norm over s and a as ∥ · ∥sa.
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Before we start from the term
∥∥E[Z(k+1)]− E[Z(k)]

∥∥
sa
, for a given (s, a),

∣∣∣E[Z(k+1)(s, a)]− E[Z(k)(s, a)]
∣∣∣

≤ γ sup
s′

∣∣∣E[Z(k)(s′, a∗(ξk+1))]− E[Z(k−1)(s′, a∗(ξk))]
∣∣∣

≤ γ sup
s′

( ∣∣∣∣E[Z(k)(s′, a∗(ξk+1)]−max
a′

E[Z(k)(s′, a′)]

∣∣∣∣
+
∣∣∣max

a′
E[Z(k)(s′, a′)]−max

a′
E[Z(k−1)(s′, a′)]

∣∣∣
+

∣∣∣∣max
a′

E[Z(k−1)(s′, a′)]− E[Z(k−1)(s′, a∗(ξk))]

∣∣∣∣ )
≤ γsup

s′,a′

∣∣∣E[Z(k)(s′, a′)]− E[Z(k−1)(s′, a′)]
∣∣∣

+ γ

k∑
i=k−1

sup
s′

∣∣∣E[Z(i)(s′, a∗(ξi+1))]−max
a′

E[Z(i)(s′, a′)]
∣∣∣

≤ γ
∥∥∥E[Z(k)]− E[Z(k−1)]

∥∥∥
sa

+ γ

k∑
i=k−1

[
sup
s′

(∣∣∣E[Z(i)(s′, a∗(ξi+1))]− Eξi+1
[Z(i)(s′, a∗(ξi+1))]

∣∣∣
+

∣∣∣∣max
a′

Eξi+1
[Z(i)(s′, a′)]−max

a′′
E[Z(i)(s′, a′′))]

∣∣∣∣ )]
≤ γ

∥∥∥E[Z(k)]− E[Z(k−1)]
∥∥∥
sa

+ 2γ
k∑

i=k−1

sup
s′,a′

(∣∣∣E[Z(i)(s′, a′)]− Eξi+1
[Z(i)(s′, a′)]

∣∣∣)

≤ γ
∥∥∥E[Z(k)]− E[Z(k−1)]

∥∥∥
sa

+ 2γ
k∑

i=k−1

∆i+1

where we use A.1.1.1 in third and fifth line and A.1.1.2 in sixth line.
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Taking a supremum over s and a, then for all k > 0,∥∥∥E[Z(k+1)]− E[Z(k)]
∥∥∥
sa

≤ γ
∥∥∥E[Z(k)]− E[Z(k−1)]

∥∥∥
sa

+ 2
k∑

i=k−1

γ∆i+1

≤ γ2
∥∥∥E[Z(k−1)]− E[Z(k−2)]

∥∥∥
sa

+ 2

k−1∑
i=k−2

γ2∆i+1 + 2

k∑
i=k−1

γ∆i+1

...

≤ γk
∥∥∥E[Z(1)]− E[Z]

∥∥∥
sa

+ 2
k∑
i=1

γi(∆k+2−i +∆k+1−i)

≤ 2γkVmax + 2
k∑
i=1

γi(∆k+2−i +∆k+1−i)

Since
∑∞

i=1 γ
i = γ

1−γ <∞ and
∑∞

i=1∆i <∞ by assumption, we have

k∑
i=1

γi∆k+1−i → 0

which is resulted from the convergence of Cauchy product of two sequences {γi}
and {∆i}. Hence, {E[Z(k)]} is a Cauchy sequence and therefore converges for
every Z ∈ Z.

Let E[Z∗] be the limit point of the sequence {E[Z(n)]}. Then,∥∥∥E[Z∗]− E[Z(n)]
∥∥∥
sa

= lim
l→∞

∥∥∥E[Z(n+l)]− E[Z(n)]
∥∥∥
sa

≤
∞∑
k=n

∥∥∥E[Z(k+1)]− E[Z(k)]
∥∥∥
sa

=

∞∑
k=n

(
2γkVmax + 2

k∑
i=1

γi(∆k+2−i +∆k+1−i)
)
.

■

A.1.4 Proof of Theorem 3.2.4

Theorem 3.2.4. If {∆n} follows the assumption in Theorem 3.2.3, then E[Z∗]

is the unique solution of Bellman optimality equation.
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Proof. The proof follows by linearity of expectation. Denote the Q-value based
operator as τ̄ . Note that ∆n converges to 0 with regularity of Z implies that
ξn converges to 1 in probability on Ω, i.e.,

lim
n→∞

sup
s,a

∣∣∣∣∫
w∈Ω

Z(n)(w; s, a)(1− ξn(w))P(dw)
∣∣∣∣ = 0

=⇒ lim
n→∞

P ({w ∈ Ω : |1− ξn(w)| ≥ ϵ}) = 0

By Theorem A.1.3, for a given ϵ > 0, there exists a constant K = max(K1,K2)
such that for every k ≥ K1,

sup
Z∈Z
∥τ̄ ξkE[Z]− τ̄E[Z]∥sa ≤

ϵ

2
.

Since τ̄ is continuous, for every k ≥ K2,

∥τ̄E[Z(k)]− τ̄E[Z∗]∥sa ≤
ϵ

2
.

Thus, it holds that

∥τ̄ ξk+1
E[Z(k)]− τ̄E[Z∗]∥sa

≤ ∥τ̄ ξk+1
E[Z(k)]− τ̄E[Z(k)]∥sa + ∥τ̄E[Z(k)]− τ̄E[Z∗]∥sa

≤ sup
Z∈Z
∥τ̄ ξk+1

E[Z]− τ̄E[Z]∥sa + ∥τ̄E[Z(k)]− τ̄E[Z∗]∥sa

≤ ϵ

2
+
ϵ

2
= ϵ.

Therefore, we have

E[Z∗] = lim
k→∞

E[Z(k)] = lim
k→∞

E[Z(k+1)]

= lim
k→∞

E[τ ξk+1
Z(k)] = lim

k→∞
τ̄ ξk+1

E[Z(k)] = τ̄E[Z∗]

Since the standard Bellman optimality operator has a unique solution, we derived
the desired result. ■
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A.2 Implementation details

Except for each own hyperparameter, our algorithms and DLTV shares the same

hyperparameter and network architecture with QR-DQN [31] for a fair comparison.

Also, we set up p-DLTV by only multiplying a gaussian noise N (0, 1) to the

coefficient of DLTV. We do not combine any additional improvements of

Rainbow such as double Q-learning, dueling network, prioritized replay, and

n-step update. Experiments on LunarLander-v2 and Atari games were performed

with 3 random seeds. The training process is 0-2% slower than QR-DQN due to

the sampling ξ and reweighting procedures.

A.2.1 Hyperparameter Setting

We report the hyperparameters for each environments we used in our experi-

ments.

Table A.1: Table of hyperparameter setting

Hyperparameters N-Chain LunarLander Atari Games

Batch size 64 128 32
Number of quantiles 200 170 200
n−step updates 1

Network optimizer Adam
β Grid search[0.05, 0.1, 0.5, 1] ×1N
κ 1

Memory size 1e6 1e5 1e6
Learning rate 5e-5 1.5e-3 5e-5

γ 0.9 0.99 0.99
Update interval 1 1 4

Target update interval 25 1 1e4
Start steps 5e2 1e4 5e4
ϵ (train) LinearAnnealer(1 → 1e-2)
ϵ (test) 1e-3 1e-3 1e-3

ϵ decay steps 2.5e3 1e5 2.5e5
Coefficient c Grid search[1e0, 5e0, 1e1, 5e1, 1e2, 5e2, 1e3, 5e3]

∆0 5e2 5e4 1e6
Number of seeds 10 3 3
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A.3 Raw scores across 55 Atari games

Table A.2: Raw scores across all 55 games, starting with 30 no-op actions.
We report the best scores for DQN, QR-DQN, IQN and Rainbow on 50M frames,
averaged by 5 seeds. Reference values were provided by DQN Zoo framework
[76]. Bold are wins against DQN, QR-DQN and IQN, and *asterisk are wins over
Rainbow.

GAMES RANDOM HUMAN DQN(50M) QR-DQN(50M) IQN(50M) RAINBOW(50M) PQR(50M)

Alien 227.8 7127.7 1541.5 1645.7 1769.2 4356.9 2455.8
Amidar 5.8 1719.5 324.2 683.4 799.2 2549.2 938.4
Assault 222.4 742.0 2387.8 11684.2 15152.4 9737.0 10759.2
Asterix 210.0 8503.3 5249.5 18373.4 32598.2 33378.6 10490.5
Asteroids 719.1 47388.7 1106.3 1503.9 1972.6 1825.4 1662.0
Atlantis 12850.0 29028.1 283392.2 937275.0 865360.0 941740.0 897640.0
BankHeist 14.2 753.1 389.0 1223.9 1266.8 1081.7 1038.8
BattleZone 2360.0 37187.5 19092.4 26325.0 30253.9 35467.1 28470.5
BeamRider 363.9 16926.5 7133.1 12912.0 19251.4 15421.9 10224.9
Berzerk 123.7 2630.4 577.4 826.5 918.9 2061.6 *137873.1
Bowling 23.1 160.7 34.4 45.4 41.5 54.7 *86.9
Boxing 0.1 12.1 87.2 99.6 99.2 99.8 97.1
Breakout 1.7 30.5 316.8 426.5 468.0 335.3 380.3
Centipede 2090.9 12017.0 4935.7 7124.0 7008.3 5691.4 *7291.2
ChopperCommand 811.0 7387.8 974.2 1187.8 1549.0 5525.1 1300.0
CrazyClimber 10780.5 35829.4 96939.0 93499.1 127156.5 160757.7 84390.9
DemonAttack 152.1 1971.0 8325.6 106401.8 110773.1 85776.5 73794.0
DoubleDunk -18.6 -16.4 -15.7 -10.5 -12.1 -0.3 -7.5
Enduro 0.0 860.5 750.6 2105.7 2280.6 2318.3 *2341.2
FishingDerby -91.7 -38.7 8.2 25.7 23.4 35.5 31.7
Freeway 0.0 29.6 24.4 33.3 33.7 34.0 34.0
Frostbite 65.2 4334.7 408.2 3859.2 5650.8 9672.6 4148.2
Gopher 257.6 2412.5 3439.4 6561.9 26768.9 32081.3 *47054.5
Gravitar 173.0 3351.4 180.9 548.1 470.2 2236.8 635.8
Hero 1027.0 30826.4 9948.3 9909.8 12491.1 38017.9 12579.2
IceHockey -11.2 0.9 -11.4 -2.1 -4.2 1.9 -1.4
Jamesbond 29.0 302.8 486.4 1163.8 1058.0 14415.5 2121.8
Kangaroo 52.0 3035.0 6720.7 14558.2 14256.0 14383.6 *14617.1
Krull 1598.0 2665.5 7130.5 9612.5 9616.7 8328.5 *9746.1
KungFuMaster 258.5 22736.3 21330.9 27764.3 39450.1 30506.9 *43258.6
MontezumaRevenge 0.0 4753.3 0.3 0.0 0.2 80.0 0.0
MsPacman 307.3 6951.6 2362.9 2877.5 2737.4 3703.4 2928.9
NameThisGame 2292.3 8049.0 6328.0 11843.3 11582.2 11341.5 10298.2
Phoenix 761.4 7242.6 10153.6 35128.6 29138.9 49138.8 20453.8
Pitfall -229.4 6463.7 -9.5 0.0 0.0 0.0 0.0
Pong -20.7 14.6 18.7 20.9 20.9 21.0 21.0
PrivateEye 24.9 69571.3 266.6 100.0 100.0 160.0 *372.4
Qbert 163.9 13455.0 5567.9 12808.4 15101.8 24484.9 15267.4
Riverraid 1338.5 17118.0 6782.8 9721.9 13555.9 17522.9 11175.3
RoadRunner 11.5 7845.0 29137.5 54276.3 53850.9 52222.6 50854.7
Robotank 2.2 11.9 31.4 54.5 53.8 64.5 60.3
Seaquest 68.4 42054.7 2525.8 7608.2 17085.6 3048.9 *19652.5
Skiing -17098.1 -4336.9 -13930.8 -14589.7 -19191.1 -15232.3 *-9299.3
Solaris 1236.3 12326.7 2031.5 1857.3 1301.5 2522.6 *2640.0
SpaceInvaders 148.0 1668.7 1179.1 1753.2 2906.7 2715.3 1749.4
StarGunner 664.0 10250.0 24532.5 63717.3 78503.4 107177.8 62920.6
Tennis -23.8 -8.3 -0.9 0.0 0.0 0.0 -1.0
TimePilot 3568.0 5229.2 2091.8 6266.8 6379.1 12082.1 6506.4
Tutankham 11.4 167.6 138.7 210.2 204.4 194.3 *231.3
UpNDown 533.4 11693.2 6724.5 27311.3 35797.6 65174.2 36008.1
Venture 0.0 1187.5 53.3 12.5 17.4 1.1 *993.3
VideoPinball 16256.9 17667.9 140528.4 104405.8 341767.5 465636.5 465578.3
WizardOfWor 563.5 4756.5 3459.9 14370.2 10612.1 12056.1 6132.8
YarsRevenge 3092.9 54576.9 16433.7 21641.4 21645.0 67893.3 27674.4
Zaxxon 32.5 9173.3 3244.9 9172.1 8205.2 22045.8 10806.6
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Table A.3: Raw scores across 55 games. We report the best scores for DQN,
QR-DQN, IQN*, and Rainbow on 50M frames, averaged by 5 seeds. Reference
values were provided by Dopamine framework [19]. Bolds are wins against
DQN, QR-DQN, and *asterisk are wins over IQN* and Rainbow. Note that IQN*
and Rainbow implemented in Dopamine framework applied n-step updates with
n = 3 which improves performance.

GAMES RANDOM HUMAN DQN(50M) QR-DQN(50M) IQN*(50M) RAINBOW(50M) PQR(50M)

Alien 227.8 7127.7 1688.1 2754.2 4016.3 2076.2 3173.9
Amidar 5.8 1719.5 888.2 841.6 1642.8 1669.6 *2814.7
Assault 222.4 742.0 1615.9 2233.1 4305.6 2535.9 *8456.5
Asterix 210.0 8503.3 3326.1 3540.1 7038.4 5862.3 *19004.6
Asteroids 719.1 47388.7 828.2 1333.4 1336.3 1345.1 851.8
Atlantis 12850.0 29028.1 388466.7 879022.0 897558.0 870896.0 880303.7
BankHeist 14.2 753.1 720.2 964.1 1082.8 1104.9 1050.1
BattleZone 2360.0 37187.5 15110.3 25845.6 29959.7 32862.1 *61494.4
BeamRider 343.9 16926.5 4771.3 7143.0 7113.7 6331.9 *12217.6
Berzerk 123.7 2630.4 529.2 603.2 627.3 697.8 *2707.2
Bowling 23.1 160.7 38.5 55.3 33.6 55.0 *174.1
Boxing 0.1 12.1 80.0 96.6 97.8 96.3 96.7
Breakout 1.7 30.5 113.5 40.7 164.4 69.8 48.5
Centipede 2090.9 12017.0 3403.7 3562.5 3746.1 5087.6 *31079.8
ChopperCommand 811.0 7387.8 1615.3 1600.3 6654.1 5982.0 4653.9
CrazyClimber 10780.5 35829.4 111493.8 108493.9 131645.8 135786.1 105526.0
DemonAttack 152.1 1971.0 4396.7 3182.6 7715.5 6346.4 *19530.2
DoubleDunk -18.6 -16.4 -16.7 7.4 20.2 17.4 15.0
Enduro 0.0 860.5 2268.1 2062.5 766.5 2255.6 1765.5
FishingDerby -91.7 -38.7 12.3 48.4 41.9 37.6 46.8
Freeway 0.0 29.6 25.8 33.5 33.5 33.2 33.0
Frostbite 65.2 4334.7 760.2 8022.8 7824.9 5697.2 *8401.5
Gopher 257.6 2412.5 3495.8 3917.1 11192.6 7102.1 *12252.9
Gravitar 173.0 3351.4 250.7 821.3 1083.5 926.2 703.5
Hero 1027.0 30826.4 12316.4 14980.0 18754.0 31254.8 15655.8
IceHockey -11.2 0.9 -6.7 -4.5 0.0 2.3 0.0
Jamesbond 29.0 302.8 500.0 802.3 1118.8 656.7 *1454.9
Kangaroo 52.0 3035.0 6768.2 4727.3 11385.4 13133.1 *13894.0
Krull 1598 2665.5 6181.1 8073.9 8661.7 6292.5 *31927.4
KungFuMaster 258.5 22736.3 20418.8 20988.3 33099.9 26707.0 22040.4
MontezumaRevenge 0.0 4753.3 2.6 300.5 0.7 501.2 0.0
MsPacman 307.3 6951.6 2727.2 3313.9 4714.4 3406.4 *5426.5
NameThisGame 2292.3 8049.0 5697.3 7307.9 9432.8 9389.5 *9891.3
Phoenix 761.4 7245.6 5833.7 4641.1 5147.2 8272.9 5260
Pitfall -229.4 6463.7 -16.8 -3.4 -0.4 0.0 *0.0
Pong -20.7 14.6 13.2 19.2 19.9 19.4 19.7
PrivateEye 24.9 69571.3 1884.6 680.7 1287.3 4298.8 *12806.1
Qbert 163.9 13455.0 8216.2 17228.0 15045.5 17121.4 15806.9
Riverraid 1338.5 17118.0 9077.8 13389.4 14868.6 15748.9 14101.3
RoadRunner 11.5 7845.0 39703.1 44619.2 50534.1 51442.4 48339.7
Robotank 2.2 11.9 25.8 53.6 65.9 63.6 48.7
Seaquest 68.4 42054.7 1585.9 4667.9 20081.3 3916.2 5038.1
Skiing -17098.1 -4336.9 -17038.2 -14401.6 -13755.6 -17960.1 *-9021.2
Solaris 1236.3 12326.7 2029.5 2361.7 2234.5 2922.2 *7145.3
SpaceInvaders 148.0 1668.7 1361.1 940.2 3115.0 1908.0 1602.4
StarGunner 664.0 10250.0 1676.5 23593.3 60090.0 39456.3 59404.6
Tennis -23.8 -9.3 -0.1 19.2 3.5 0.0 *15.4
TimePilot 3568.0 5229.2 3200.9 6622.8 9820.6 9324.4 5597.0
Tutankham 11.4 167.6 138.8 209.9 250.4 252.2 147.3
UpNDown 533.4 11693.2 10405.6 29890.1 44327.6 18790.7 32155.5
Venture 0.0 1187.5 50.8 1099.6 1134.5 1488.9 1000.0
VideoPinball 16256.9 17667.9 216042.7 250650.0 486111.5 536364.4 460860.9
WizardOfWor 563.5 4756.5 2664.9 2841.8 6791.4 7562.7 5738.2
YarsRevenge 3092.9 54576.9 20375.7 66055.9 57960.3 31864.4 *67545.8
Zaxxon 32.5 9173.3 1928.6 8177.2 12048.6 14117.5 9531.8
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Table A.4: Raw scores across all 49 games, starting with 30 no-op actions. We
report the best scores for QR-DQN zoo [76], QR-DQN Zhang [111](implemented by
QUOTA to evaluate the relative improvement) for a fair comparison and QUOTA

[111], DLTV [64] on 40M frames, averaged by 3 seeds. Bold are wins against
QUOTA and DLTV.

Games Random Human QR-DQN zoo(40M) QR-DQN Zhang(40M) QUOTA(40M) DLTV(40M) PQR(40M)

Alien 227.8 7127.7 1645.7 1760.0 1821.9 2280.9 2406.9
Amidar 5.8 1719.5 552.9 567.9 571.4 1042.7 644.1
Assault 222.4 742 9880.4 3308.7 3511.1 5896.2 10759.2
Asterix 210 8503.3 13157.2 6176.0 6112.1 6336.6 8431.0
Asteroids 719.1 47388.7 1503.9 1305.3 1497.6 1268.7 1416.00
Atlantis 12850 29028.1 750190.1 978385.3 965193.0 845324.9 897640.0
BankHeist 14.2 753.1 1146.1 644.7 735.2 1183.7 1038.8
BattleZone 2360 37187.5 17788.4 22725.0 25321.6 23315.8 28470.5
BeamRider 363.9 16926.5 10684.2 5007.8 5522.6 6490.1 10224.9
Bowling 23.1 160.7 44.3 27.6 34.0 29.8 86.9
Boxing 0.1 12.1 98.2 95.0 96.1 112.8 97.1
Breakout 1.7 30.5 401.5 322.1 316.7 260.9 357.7
Centipede 2090.9 12017.0 6633.0 4330.3 3537.9 4676.7 6803.6
ChopperCommand 811.0 7387.8 1133.1 3421.1 3793.0 2586.3 1500.0
CrazyClimber 10780.5 35829.4 93499.1 107371.6 113051.7 92769.1 83900.0
DemonAttack 152.1 1971.0 98063.6 80026.6 61005.1 146928.9 73794.0
DoubleDunk -18.6 -16.4 -10.5 -21.6 -21.5 -23.3 -10.5
Enduro 0.0 860.5 2105.7 1220.0 1162.3 5665.9 2252.8
FishingDerby -91.7 -38.7 25.7 -9.6 -59.0 -8.2 31.7
Freeway 0.0 29.6 30.9 30.6 31.0 34.0 34.0
Frostbite 65.2 4334.7 3822.7 2046.3 2208.5 3867.6 4051.2
Gopher 257.6 2412.5 4191.2 9443.8 6824.3 10199.4 47054.5
Gravitar 173.0 3351.4 477.4 414.3 457.6 357.9 583.6
IceHockey -11.2 0.9 -2.4 -9.8 -9.9 -14.3 -2.1
Jamesbond 29.0 302.8 907.1 601.7 495.5 779.8 1747.1
Kangaroo 52.0 3035 14171 2364.6 2555.8 4596.7 14385.1
Krull 1598.0 2665.5 9618.2 7725.4 7747.5 10012.21 9537.0
KungFuMaster 258.5 22736.3 27576.5 17807.4 20992.5 23078.4 38074.1
MontezumaRevenge 0.0 4753.3 0.0 0.0 0.0 0.0 0.0
MsPacman 307.3 6951.6 2561.0 2273.3 2423.5 3191.7 2895.6
NameThisGame 2292.3 8049.0 11770.0 7748.2 7327.5 8368.1 10298.2
Pitfall -229.4 6463.7 0.0 -32.9 -30.7 - 0.0
Pong -20.7 14.6 20.9 19.6 20.0 21.0 21.0
PrivateEye 24.9 69571.3 100.0 419.3 114.1 1358.6 372.4
Qbert 163.9 13455.0 8348.2 10875.3 11790.2 15856.2 14593.0
Riverraid 1338.5 17118.0 8814.1 9710.4 10169.8 10487.3 9374.7
RoadRunner 11.5 7845.0 52575.7 27640.7 27872.2 49255.7 44341.0
Robotank 2.2 11.9 50.4 45.1 37.6 58.4 53.9
Seaquest 68.4 42054.7 5854.6 1690.5 2628.6 3103.8 16011.2
SpaceInvaders 148.0 1668.7 1281.8 1387.6 1553.8 1498.6 1562.6
StarGunner 664.0 10250.0 53624.7 49286.6 52920.0 53229.5 55475.0
Tennis -23.8 -8.3 0.0 -22.7 -23.7 -18.4 -1.0
TimePilot 3568.0 5229.2 6243.4 6417.7 5125.1 6931.1 6506.4
Tutankham 11.4 167.6 200.0 173.2 195.4 130.9 213.3
UpNDown 533.4 11693.2 22248.8 30443.6 24912.7 44386.7 33786.3
Venture 0.0 1187.5 12.5 5.3 26.5 1305.0 0.0
VideoPinball 16256.9 17667.9 104227.2 123425.4 44919.1 93309.6 443870.0
WizardOfWor 563.5 4756.5 13133.8 5219.0 4582.0 9582.0 6132.8
Zaxxon 32.5 9173.3 7222.7 6855.1 8252.8 6293.0 10250.0
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Appendix B

Appendix of Chapter 4

B.1 Notation
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Table B.1: Table of notation (Part 1: core and statistical notation)

Notation Description

S State space of size S.

A Action space of size A.

H Horizon length of one episode.

T Number of episodes.

rh(s, a) Reward of (s, a) at step h.

Ph(s′|s, a) Transition probability from (s, a) to s′ at step h.

Hk
h History up to step h in episode k.

N Number of statistical functionals.

Qπh(s, a) Q-function of a given policy π at step h.

V π
h (s) V-function of a given policy π at step h.

Zπh (s, a) Random variable of the Q-function.

Z̄πh (s) Random variable of the V -function.

ηπh(s, a) Probability distribution of the Q-function.

η̄πh(s) Probability distribution of the V -function.

[Ph(·)] Expectation over transition, [Ph(·)] = Es′∼Ph(·).

(Br)# Pushforward of the distribution through Br(x) := r + x.

ψ(η̄) Statistical functional Pψ(R)S→RS .

ψ1:N (η̄) N -collection of statistical functionals Pψ1:N
(R)S→RN×S .

Pψ1:N
(R) Domain of the sketch ψ1:N .

Iψ1:N
Image of the sketch ψ1:N .

T Distributional Bellman operator, T η̄ := (Br)#[Pη̄].

Tψ Sketch Bellman operator w.r.t. ψ, Tψψ(η̄) :=
ψ((Br)#[Pη̄]).

T̂ψ Empirical sketch Bellman operator w.r.t. ψ, T̂ψψ(η̄) :=

ψ((Br)#[P̂η̄]).
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Table B.2: Table of notation (Part 2: functionals and dataset-related quantities)

Notation Description

f (n) n-th element of an N -dimensional vector f .

∥f∥∞ Max norm of f : X → R, ∥f∥∞ := maxx∈X |f (n)(x)|.

∥f∥∞,1 l1-norm of max norms, ∥f∥∞,1 :=
∑N

n=1maxx∈X |f (n)(x)|.

FN Function class of N -dimensional embedding space.

Z Set of state–action pairs Z := {(st, at)}|Z|
t=1.

D Dataset D := {(st, at, [d(1)t , . . . , d
(N)
t ])}|D|

t=1.

∥f∥2Z For f : S ×A → R, ∥f∥2Z :=
∑N

n=1

∑
(s,a)∈Z(f

(n)(s, a))2.

∥f∥2D For f : S × A → R, ∥f∥2D :=
∑N

n=1

∑|D|
t=1(f

(n)(st, at) −
d
(n)
t )2.

w(n)(FN , s, a) Width function at (s, a), w(n)(FN , s, a) :=
maxf,g∈FN |f (n)(s, a)− g(n)(s, a)|.

f̃kh,η̄ Solution of moment least squares regression, f̃kh,η̄ :=
argminf∈FN ∥f∥Dkh .

fη̄ Target sketch of distribution η̄, fη̄ := ψ1:N ((Br)#[Phη̄]).

(FN )kh Confidence region at step h, episode k, (FN )kh := {f ∈
FN | ∥f − f̃kh,η̄∥2Zkh

≤ β(FN , δ)}.

N (FN , ϵ) Covering number of FN w.r.t. an ϵ-ball.

dimE(FN , ϵ) Eluder dimension of FN w.r.t. ϵ.
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B.2 Pseudocode of SF-LSVI and Technical Remarks

Algorithm 5 Statistical Functional Least Squares Value Iteration (SF-LSVI)

Input: failure probability δ ∈ (0, 1) and the number of episodes
K

1: for episode k = 1, 2, . . . ,K do
2: Receive initial state sk1
3: Initialize ψ1:N (η̄

k
H+1(·))← 0N

4: for step h = H,H − 1, . . . , 1 do

5: Dkh ←
{
sτh′ , a

τ
h′ , ψ1:N

(
(Brτ

h′
)#η̄

k
h+1(s

τ
h′+1)

)}
(τ,h′)∈[k−1]×[H]

// Data collection
6: f̃kh,η̄ ← argminf∈FN ∥f∥Dkh

// Distribution estimation
7: bkh(·, ·)← w(1)((FN )kh, ·, ·)
8: Qkh(·, ·)← min{(f̃kh,η̄)(1)(·, ·) + bkh(·, ·), H}
9: πkh(·) = argmaxa∈AQ

k
h(·, a) , V k

h (·) = Qkh(·, πkh(·))
// Optimistic planning

10: ψ1

(
ηkh(·, ·)

)
← Qkh(·, ·)

11: ψ2:N

(
ηkh(·, ·)

)
←
(
min{(f̃kh,η̄)(n)(·, ·), H}

)
n∈[2:N ]

12: ψ1

(
η̄kh(·)

)
← V k

h (·)

13: ψ2:N

(
η̄kh(·)

)
← ψ1:N

(
ηkh(·, πkh(·))

)
n∈[2:N ]

14: for h = 1, 2, . . . ,H do
15: Take action akh ← πkh(s

k
h)

16: Observe reward rkh(s
k
h, a

k
h) and get next state skh+1.

Remark B.2.1. For an optimistic planning, we define the bonus function as the
width function bkh(s, a) := wkh((FN )kh, s, a) where (FN )kh denotes a confidence
region at step h, episode k. When F is a linear function class, the width function
can be evaluated by simply computing the maximal distance of weight vector. For
a general function class F , computing the width function requires to solve a set-
constrained optimization problem, which is known as NP-hard [33]. However, a
width function is computed simply for optimistic exploration, and approximation
errors are known to have a small effect on regret [1].
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B.3 Related Work and Discussion

B.3.1 Technical Clarifications on Linearity Assumption in Ex-
isting Results

Bellman Closedness and Linearity. Rowland et al. [81] proved that quantile

functional is not Bellman closed by providing a specific counterexample. However,

their discussion based on counterexamples can be generalized as it assumes that

the sketch Bellman operator for the quantile functional needs to be linear.

They consider an discounted MDP with initial state s0 with single action

a, which transits to one of two terminal states s1, s2 with equal probability.

Letting no reward at state s0, Unif([0, 1]) at state s1, and Unif([1/K, 1 +

1/K]) at state s2, the return distribution at state s0 is computed as mixture

1
2Unif([0, γ]) +

1
2Unif([γ/K, γ + γ/K]). Then the 1

2K−quantile at state s0 is γ
K .

They proposed a counterexample where each quantile distribution of state s1, s2

is represented as 1
K

∑K
k=1 δ 2k−1

K
and 1

K

∑K
k=1 δ 2k+1

K
respectively, the 1

2K−quantile

of state s0 is ψq2K

(
1
2K

∑K
k=1 δ γ(2k−1)

K

+ δ γ(2k+1)
K

)
= 3γ

2K . However, this example

does not consider that the mixture of quantiles is not a quantile of the mixture

distribution (i.e., ψq(λη1 + (1 − λ)η2) ̸= λψq(η1) + (1 − λ)ψq(η2)), due to the

nonlinearity of the quantile functional. Therefore, this does not present a valid

counterexample to prove that quantile functionals are not Bellman closed.

Bellman Optimizability and Linearity. Marthe et al. [63] proposed the

notion of Bellman optimizable statistical functional which redefine the Bellman

update by planning with respect to statistical functionals rather than expected

returns. They proved that W1-continuous Bellman Optimizable statistical func-

tionals are characterized by exponential utilities 1
λ logEZ∼η[exp(λZ)]. However,

their proof requires some technical clarification regarding the assumption that

such statistical functionals are linear.
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To illustrate, they define a statistical functional ψf and consider two proba-

bility distributions η1 =
1
2(δ0 + δh) and η2 = δϕ(h) where ϕ(h) = f−1

(
1
2(f(0) +

f(h))
)
. Using the translation property, they lead ψf (η1) = ψf (η2) to

1
2(f(x) +

f(x+h)) = f(x+ϕ(h)) for all x ∈ R. However, this equality ψf
(
1
2(δx+δx+h)

)
=

1
2(f(x) + f(x + h)) holds only if ψf is linear, which is not necessarily a valid

assumption for all statistical functionals.

B.3.2 Existence of Nonlinear Bellman Closed Sketch.

The previous two examples may not have considered the possibility that the

sketch Bellman operator might not necessarily be linear. However, some sta-

tistical functionals are Bellman-closed even if they are nonlinear, so it is open

question whether there is a nonlinear sketch Bellman operator that makes

the quantile functional Bellman-closed. In this section, we present examples

of maximum and minimum functionals that are Bellman-closed, despite being

nonlinear.

In a nutshell, consider the maximum of return distribution at state s1, s2 is

γ, γ + γ/K respectively. Beyond linearity, the maximum of return distribution

at state s0 can be computed by taking the maximum of these values;

max(max(η̄(s1)),max(η̄(s2))) = max(γ, γ + γ/K) = γ + γ/K

which produces the desired result. This implies the existence of a nonlinear sketch

that is Bellman closed. More precisely, by defining maxs′∼P(·|s,a) and mins′∼P(·|s,a)

as the maximum and minimum of the sampled sketch ψ
(
(Br)#η̄(s′)

)
with the

distribution P(·|s, a), we can derive the sketch Bellman operator for maximum

and minimum functionals as follows;

126



Tψmax

(
ψmax(η̄(s))

)
= max

s′∼P(·|s,a)
ψmax

(
(Br)#η̄(s′)

)
= max

s′∼P(·|s,a)

(
r + ψmax

(
η̄(s′)

))
Tψmin

(
ψmin(η̄(s))

)
= min

s′∼P(·|s,a)
ψmin

(
(Br)#η̄(s′)

)
= min

s′∼P(·|s,a)

(
r + ψmin

(
η̄(s′)

))
.

B.3.3 Non-existence of sketch Bellman operator for quantile
functional

In this section, we prove that quantile functional cannot be Bellman closed under

any additional sketch. First we introduce the definition of mixture-consistent,

which is the property that the sketch of a mixture can be computed using only

the sketch of the distribution of each component.

Definition B.3.1 (mixture-consistent). A sketch ψ ismixture-consistent if for
any ν ∈ [0, 1] and any distributions η1, η2 ∈Pψ(R), there exists a corresponding
function hψ such that

ψ(νη1 + (1− ν)η2) = hψ

(
ψ(η1), ψ(η2), ν

)
.

Next, we will provide some examples of determining whether a sketch is

mixture-consistent or not.

Example 1. Every moment or exponential polynomial functional is mixture-

consistent.

Proof. For any n ∈ [N ] and λ ∈ C,

EZ∼νη1+(1−ν)η2 [Z
n exp(λZ)]

= νEZ∼η1 [Zn exp(λZ)] + (1− ν)EZ∼η2 [Zn exp(λZ)].

■

Example 2. Variance functional is not mixture-consistent.

Proof. Let ν = 1
2 and Z, Y be the random variables where Z ∼ 1

2δ0 +
1
2δ2 and

Y ∼ 1
2δk +

1
2δk+2. Then, Var(Z) = Var(Y ) = 1. While RHS is constant for any

k, LHS is not a constant for any k, i.e.,

VarX∼ 1
2
( 1
2
δ0+

1
2
δ2)+

1
2
( 1
2
δk+

1
2
δk+2)

(X) =
1

4
(k2 + 5).

127



■

While variance functional is not mixture consistent by itself, it can be mixture

consistent with another statistical functional, the mean.

Example 3. Variance functional is mixture-consistent under mean functional.

Proof. Notice that mean functional is mixture-consistent. We need to show that
variance functional is mixture-consistent under mean functional.

VarZ∼νη1+(1−ν)η2 [Z]

= EZ∼νη1+(1−ν)η2 [Z
2]− (EZ∼νη1+(1−ν)η2 [Z])

2

= νEZ∼η1 [Z2] + (1− ν)EZ∼η2 [Z2]− (νEZ∼η1 [Z] + (1− ν)EZ∼η2 [Z])2

= ν(VarZ∼η1 [Z] + (EZ∼η1 [Z])2) + (1− ν)(VarZ∼η2 [Z] + (EZ∼η2 [Z])2)
− (νEZ∼η1 [Z] + (1− ν)EZ∼η2 [Z])2.

■

This means that to determine whether it is mixture-consistent or not, we

should check it on a per-sketch basis, rather than on a per-statistical functional

basis.

Example 4. Maximum and minimum functional are both mixture-consistent.

Proof.
max

Z∼νη1+(1−ν)η2
[Z] = max(max

Z∼η1
[Z],max

Z∼η2
[Z])

and

min
Z∼νη1+(1−ν)η2

[Z] = min(min
Z∼η1

[Z], min
Z∼η2

[Z])

■

Since maximum and minimum functionals are mixture consistent, we can

construct a nonlinear sketch bellman operator like the one in section B.3.2. This
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is possible because there is a nonlinear function hψ that ensures the sketch is

closed under mixture.

Before demonstrating that a quantile sketch cannot be mixture consistent

under any additional sketch, we will first illustrate with the example of a median

functional that is not mixture consistent.

Example 5. Median sketch is not mixture-consistent.

Proof. Let ν = 1
2 and Z, Y be the random variables where Z ∼ 0.2δ0 + 0.8δ1

and Y ∼ 0.6δ0 + 0.4δk for some 0 < k < 1. Then ψmed(Z) = 1 and ψmed(Y ) = 0.
However,

medX=Z+Y
2

[X] = ψmed(0.4δ0 + 0.2δk + 0.4δ1) = k

which is dependent in k. ■

Lemma B.3.2. Quantile sketch cannot be mixture-consistent, under any addi-
tional sketch.

Proof. For a given integer N > 0 and a quantile level α ∈ (0, 1), let ν = 1
2 and

a random variable Y ∼ py0δ0 + py1δy1 + · · · + pyN δyN (0 < y1 < · · · < yN < 1)
where py0 > α so that ψα−quantile[Y ] = 0. Consider another random variable
Z ∼ pz0δ0+pz1δ1 where pz0 < α so that ψα−quantile[Z] = 1. Then the α−quantile
of the mixture X = Y+Z

2 is

ψα−quantile[X] = yn where n = min

{
n ≤ N

∣∣∣ 1
2

n∑
n′=0

pyn′ +
1

2
pz0 > α

}
.

Letting pz0 = 2α−
∑n

n′=0 pyn′ , we can manipulate ψα−quantile[X] to be any value
of yn. Hence, ψα−quantile[X] is a function of all possible outcomes of Y .

If there exists a finite number of statistical functionals which make quantile
sketch mixture-consistent, then such sketch would uniquely determine the dis-
tribution for any N . This results in a contradiction that infinite-dimensional
distribution space can be represented by a finite number of statistical func-
tional. ■

Lemma B.3.3. If a sketch ψ is Bellman closed, then it is mixture-consistent.
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Proof. Consider an MDP where initial state s0 has no reward and transits to
two state s1, s2 with probability ν, 1−ν and reward distribution η̄1, η̄2. Since ψ is
Bellman closed, ψ(η̄(s0)) is a function of ψ(η̄(s1)) and ψ(η̄(s2)), (i.e., ψ(η̄(s0)) =
gψ(ψ(η̄(s1)), ψ(η̄(s2))) for some gψ). Since ψ(η̄(s0)) = ψ(νη̄(s1) + (1− ν)η̄(s2)),
it implies that ψ is mixture-consistent. ■

Combining the results of Lemma B.3.2 and Lemma B.3.3, we prove that a

quantile sketch cannot be Bellman closed, no matter what additional sketches

are provided.
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B.4 Proof

Theorem (4.3.3). Quantile functional cannot be Bellman closed under any addi-
tional sketch.

Proof. See Lemma B.3.2 and Lemma B.3.3. ■

Lemma (4.3.5). Let Fη̄ be a CDF of the probability distribution η̄ ∈ P(R)S .
Then a sketch is Bellman unbiased if and only if the sketch is a homogeneous
of degree k, i.e., there exists some vector-valued function h = h(x1, · · · , xk) :
X k → RN such that

ψ(η̄) =

∫
· · ·
∫
h(x1, · · · , xk)dFη̄(x1) · · · dFη̄(xk).

Proof. (⇒) Consider an two-stage MDP with a single action a, and an initial
state s0 which transits to one of terminal state {s1, · · · , sK} with transition kernel
P(·|s0, a). Assume that the reward r(s0) = 0. Then η̄(s0) =

∑K
k=1 P(sk)δr(sk).

Note that s′1, · · · , s′k are independent and identically distributed random variable
in distribution P(·|s, a).

Es′∼P(·|s0,a)

[
ϕψ

(
ψ
(
(Br)#η̄(s′1)

)
, · · · , ψ

(
(Br)#η̄(s′k)

))]
= ψ1:N

(
(Br)#Es′∼P(·|s0,a)[η̄(s

′)]
)

=⇒ Es′∼P(·|s0,a)

[
ϕψ

(
ψ
(
δr(s′1)

)
, · · · , ψ

(
δr(s′k)

))]
= ψ

(
Es′∼P(·|s0,a)[δr(s′)]

)
=⇒ Es′∼P(·|s0,a)

[
ϕψ

(
g(s′1), · · · , g(s′k)

)]
= ψ

(
η̄(s0)

)
=⇒

∫
· · ·
∫
h(s′1, · · · , s′k)dFη̄(s′1) · · · dFη̄(s′k) = ψ

(
η̄(s0)

)
.

(⇐)

ψ
(
(Br)#Es′∼P(·|s,a)[η̄(s

′)]
)

=

∫
· · ·
∫
h(x1, · · · , xk)dF(Br)#Es′∼P(·|s,a)[η̄(s

′)](x1), · · · , dF(Br)#Es′∼P(·|s,a)[η̄(s
′)](xk)

=

∫
· · ·
∫
h(x1 + r, · · · , xk + r)d

(
Es′∼P(·|s,a)Fη̄(s′)(x1)

)
, · · · , d

(
Es′∼P(·|s,a)Fη̄(s′)(xk)

)
= Es′∼P(·|s,a)

[∫
· · ·
∫
h(x1 + r, · · · , xk + r)dFη̄(s′)(x1) · · · dFη̄(s′)(xk)

]
= Es′∼P(·|s,a)

[
ψ
(
(Br)#[η̄(s′)]

)]
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Theorem (4.3.6). The only finite statistical functionals that are Bellman unbiased
and closed are given by the collections of ψ1, . . . , ψN where its linear span
{
∑N

n=0 αnψn| αn ∈ R , ∀N} is equal to the set of exponential polynomial
functionals {η → EZ∼η[Z l exp (λZ)]| l = 0, 1, . . . , L, λ ∈ R}, where ψ0 is the
constant functional equal to 1. In discount setting, it is equal to the linear
span of the set of moment functionals {η → EZ∼η[Z l]| l = 0, 1, . . . , L} for some
L ≤ N .

Proof. Our proof is mainly based on the proof techniques of Rowland et al.
[81] and we describe in an extended form. Since their proof also considers
the discounted setting, we will define Br,γ(x) = r + γx for discount factor

γ ∈ [0, 1). By assumption of Bellman closedness, ψn

(
(Br,γ)#η̄(s′)

)
will be

written as g(r, γ, ψ1:N (η̄(s′)) for some g. By assumption of Bellman unbiasedness

and Lemma 4.3.5, both ψ1:N (η̄(s′)) and ψn

(
(Br,γ)#η̄(s′)

)
are affine as functions

of the distribution η̄(s′),

ψ1:N (αη̄1(s
′) + (1− α)η̄2(s′))

= EZi∼αη̄1(s′)+(1−α)η̄2(s′)[h1:N (Z̄1, · · · , Z̄k)]
= αEZ̄i∼η̄1(s′)[h1:N (Z̄1, · · · , Z̄k)] + (1− α)EZ̄i∼η̄2(s′)[h1:N (Z̄1, · · · , Z̄k)]
= αψ1:N (η̄1(s

′)) + (1− α)ψ1:N (η̄2(s
′))

and

ψn

(
(Br,γ)#(αη̄1(s′) + (1− α)η̄2(s′))

)
= EZi∼αη̄1(s′)+(1−α)η̄2(s′)[hn(r + γZ̄1, · · · , r + γZ̄k)]

= αEZ̄i∼η̄1(s′)[hn(r + γZ̄1, · · · , r + γZ̄k)]

+ (1− α)EZ̄i∼η̄2(s′)[hn(r + γZ̄1, · · · , r + γZ̄k)]

= αψn

(
(Br,γ)#η̄1(s′)

)
+ (1− α)ψn

(
(Br,γ)#η̄2(s′)

)
Therefore, g(r, γ, ·) is also affine on the convex codomain of ψ1:N . Thus, we
have

EZ̄i∼η̄[ϕψn(r+γZ̄1, · · · , r+γZ̄k)] = a0(r, γ)+

N∑
n′=1

an′(r, γ)EZ̄i∼η̄[ϕψn′ (Z̄1, · · · , Z̄k)]
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for some function a0:N : R× [0, 1]→ R. By taking η̄(s′) = δx, we obtain

ϕψn(r + γx, · · · , r + γx) = a0(r, γ) +
N∑

n′=1

an′(r, γ)ϕψn′ (x, · · · , x).

According to Engert [35], for any translation invariant finite-dimensional space
is spanned by a set of function of the form

{x 7→ xl exp(λjx)| j ∈ [J ], 0 ≤ l ≤ L}

for some finite subset {λ1, · · · , λJ} of C. Hence, each function x 7→ ϕψn(x, · · · , x)
is expressed as linear combination of exponential polynomial functions. In
addition, the linear combination of ϕψn should be closed under composition
with for any discount factor γ ∈ [0, 1], all λj should be zero. Hence, the linear
combination of ϕψ1 , · · · , ϕψN must be equal to the span of {x 7→ xl| 0 ≤ l ≤ L}
for some L ∈ N.

■

Lemma (4.5.3). Consider a fixed k ∈ [K] and a fixed h ∈ [H]. Let Zkh =

{(sτh, aτh)}τ∈[k−1] and Dkh,η̄ =
{(
sτh, a

τ
h, ψ1:N

(
(Bτrh′ )#η̄(s

τ
h′+1)

))}
τ∈[k−1]

for any

η̄ : S →P([0, H]). Define f̃kh,η̄ = argminf∈FN ∥f∥2Dkh,η̄
. For any η̄ and δ ∈ (0, 1),

there is an event E(η̄, δ) such that conditioned on E(η̄, δ), with probability at
least 1− δ, for any η̄′ : S →P([0, H]) with ∥ψ1:N (η̄

′)− ψ1:N (η̄)∥∞,1 ≤ 1/T or∑N
n=1 ∥ψn(η̄′)− ψn(η̄)∥∞ ≤ 1/T , we have∥∥∥f̃h,η̄′(·, ·)− ψ1:N

(
(Br(·,·))#[Pη̄′](·, ·)

)∥∥∥
Zkh

≤ c′
(
N

1
2H
√
log(1/δ) + logN (FN , 1/T )

)
for some constant c′ > 0.

Proof. Define the sketch of target fη̄ : S ×A → RN ,

fη̄(·, ·) := ψ1:N

(
(Br(·,·))#[Pη̄](·, ·)

)
for all i ∈ [N ].
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For any f ∈ F ,

∥f∥2Dk
h,η̄′
− ∥fη̄′∥2Dk

h,η̄′

=
N∑
n=1

∑
sτh,a

τ
h∈Z

k
h,η̄′

(
f (n)(sτh, a

τ
h)− ψn

(
(Brτh)#η̄

′(sτh+1)
))2

−
(
f
(n)
η̄′ (sτh, a

τ
h)− ψn

(
(Brτh)#η̄

′(sτh+1)
))2

=

N∑
n=1

∑
sτh,a

τ
h∈Z

k
h,η̄′

(f (n)(sτh, a
τ
h)− f

(n)
η̄′ (sτh, a

τ
h))

2

+ 2(f (n)(sτh, a
τ
h)− f

(n)
η̄′ (sτh, a

τ
h))
(
f
(n)
η̄′ (sτh, a

τ
h)− ψn

(
(Brτh)#η̄

′(sτh+1)
))

≥ ∥f − fη̄′∥2Zkh−4
N∑
n=1

∥f (n)η̄ − f (n)η̄′ ∥∞(H + 1)|Zkh |

+

N∑
n=1

∑
sτh,a

τ
h∈Z

k
h,η̄′

[
2(f (n)(sτh, a

τ
h)− f

(n)
η̄ (sτh, a

τ
h))
(
f
(n)
η̄ (sτh, a

τ
h)− ψn

(
(Brτh)#η̄(s

τ
h+1)

))
︸ ︷︷ ︸

χτh(f
(n))

]

≥ ∥f − fη̄′∥2Zkh−4N(H + 1)−
∣∣∣ N∑
n=1

∑
sτh,a

τ
h∈Z

k
h,η̄′

χτh(f
(n))
∣∣∣.

For the first inequality, we change the second term from η̄′ to η̄ which are the
ϵ-covers. Notice that AC−BC ′ ≥ −|AC−BC ′| ≥ −|(A−B)C|− |(A−B)C ′| ≥
−2|A−B||max(C,C ′)|.

(f (n)(sτh, a
τ
h)− f

(n)
η̄′ (sτh, a

τ
h))
(
f
(n)
η̄′ (sτh, a

τ
h)− ψn

(
(Brτh)#η̄

′(sτh+1)
))

− (f (n)(sτh, a
τ
h)− f

(n)
η̄ (sτh, a

τ
h))
(
f
(n)
η̄ (sτh, a

τ
h)− ψn

(
(Brτh)#η̄(s

τ
h+1)

))
≥ −2∥f (n)η̄′ (sτh, a

τ
h)− f

(n)
η̄ (sτh, a

τ
h)∥

×max
(∣∣∣f (n)η̄′ (sτh, a

τ
h)− ψn

(
(Brτh)#η̄

′(sτh+1)
)∣∣∣, ∣∣∣f (n)η̄ (sτh, a

τ
h)− ψn

(
(Brτh)#η̄(s

τ
h+1)

)∣∣∣)
≥ −2∥f (n)η̄′ (sτh, a

τ
h)− f

(n)
η̄ (sτh, a

τ
h)∥(H + 1)

For the second inequality, consider η̄′ : S →P([0, H]) with
∑N

n=1 ∥ψn(η̄′)−

134



ψn(η̄)∥∞ ≤ 1/T . We have

∥f (n)η̄ − f (n)η̄′ ∥∞ = max
s,a

∣∣∣ n∑
n′=1

Hn′
[ψn′([Pη̄](s, a))− ψn′([Pη̄′](s, a))]rn−n

′
/Hn−1

∣∣∣
≤

n∑
n′=1

max
s′

∣∣∣ψn′(η̄(s′))− ψn′(η̄′(s′))
∣∣∣

≤ 1/T.

Defining Fkh as the filtration induced by the sequence {(sτh′ , aτh′)}τ,h′∈[k−1]×[H]∪
{(sk1, ak1), (sk2, ak2), . . . , (skh, akh)}, notice that

E
[ N∑
n=1

χτh(f
(n))
∣∣∣Fτh]

=

N∑
n=1

2(f (n)(sτh, a
τ
h)− f

(n)
η̄ (sτh, a

τ
h))(f

(n)
η̄ (sτh, a

τ
h)− E

[
ψn

(
(Brτh)#η̄(s

τ
h+1)

)∣∣∣Fτh])
=

N∑
n=1

2(f (n)(sτh, a
τ
h)− f

(n)
η̄ (sτh, a

τ
h))(f

(n)
η̄ (sτh, a

τ
h)− Esτh+1∼Ph(·|sτh,a

τ
h)

[
ψn

(
(Brτh)#η̄(s

τ
h+1)

)]
)

=
N∑
n=1

2(f (n)(sτh, a
τ
h)− f

(n)
η̄ (sτh, a

τ
h))(f

(n)
η̄ (sτh, a

τ
h)− ψn

(
(Brτh)#Esτh+1∼Ph(·|sτh,a

τ
h)
[η̄(sτh+1)]

)
)

= 0

and∣∣∣ N∑
n=1

χτh(f
(n))
∣∣∣

=
∣∣∣ N∑
n=1

2(f (n)(sτh, a
τ
h)− f

(n)
η̄ (sτh, a

τ
h))(f

(n)
η̄ (sτh, a

τ
h)− ψn

(
(Brτh)#η̄(s

τ
h+1)

)
)
∣∣∣

≤ max
n∈[N ]

{
2(f

(n)
η̄ (sτh, a

τ
h)− ψn

(
(Brτh)#η̄(s

τ
h+1)

)
)
} N∑
n=1

∣∣∣f (n)(sτh, aτh)− f (n)η̄ (sτh, a
τ
h)
∣∣∣

≤ 2(H + 1)

N∑
n=1

∣∣∣f (n)(sτh, aτh)− f (n)η̄ (sτh, a
τ
h)
∣∣∣

In third equality, we emphasize that only Bellman unbiased sketch can derive
the martingale difference sequence which induce the concentration result. Since
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every moment functional is commutable with mixing operation, the transfor-
mation ϕψn in Definition 4.3.4 is identity for all n ∈ [N ]. Hence, we choose the
sketch as moment which already knows ϕψ.

By Azuma-Hoeffding inequality,

P
[∣∣∣ ∑

(τ,h)∈[k−1]×[H]

N∑
n=1

χτh(f
(n))
∣∣∣ ≥ ϵ]

≤ 2 exp
(
− ϵ2

2(2(H + 1))2
∑

(τ,h)∈[k−1]×[H]

(∑N
n=1 |f (n) − f

(n)
η̄ |
)2)

≤ 2 exp
(
− ϵ2

2(2(H + 1))2
∑

(τ,h)∈[k−1]×[H]

(
N
∑N

n=1 |f (n) − f
(n)
η̄ |2

))

= 2 exp
(
− ϵ2

2N(2(H + 1))2∥f − fη̄∥2Zkh

)

where the second inequality follows from the Cauchy-Schwartz inequality.

We set

ϵ =

√
8N(H + 1)2∥f − fη̄∥2Zkh

log
(N (FN , 1/T )

δ

)

With union bound for all f ∈ C(FN , 1/T ), with probability at least 1− δ,

∣∣∣ ∑
(τ,h)∈[k−1]×[H]

N∑
n=1

χτh(f
(n))
∣∣∣ ≤ c′N 1

2 (H + 1)∥f − fη̄∥Zkh

√
log
(N (FN , 1/T )

δ

)

for some constant c′ > 0.

For all f ∈ FN , there exists g ∈ C(FN , 1/T ), such that ∥f − g∥∞,1 ≤ 1/T
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or
∑N

n=1 ∥f (n) − g(n)∥∞ ≤ 1/T for all n ∈ [N ],

∣∣∣ ∑
(τ,h)∈[k−1]×[H]

N∑
n=1

χτh(f
(n))
∣∣∣

≤
∣∣∣ ∑
(τ,h)∈[k−1]×[H]

N∑
n=1

χτh(g
(n))
∣∣∣+ 2(H + 1)|Zkh |

N∑
n=1

1

T

≤ c′N
1
2 (H + 1)∥g − fη̄∥Zkh

√
log
(N (FN , 1/T )

δ

)
+ 2N(H + 1)

≤ c′N
1
2 (H + 1)(∥f − fη̄∥Zkh + 1)

√
log
(N (FN , 1/T )

δ

)
+ 2N(H + 1)

≤ c′N
1
2 (H + 1)(∥f − fη̄′∥Zkh + 2)

√
log
(N (FN , 1/T )

δ

)
+ 2N(H + 1)

where the third inequality follows from,

∥f − g∥2Zkh ≤
N∑
n=1

∑
(τ,h)∈[k−1]×[H]

|f (n)(sτh, aτh)− g(n)(sτh, aτh)|2

≤ NT
( 1
T

)2
≤ 1.

Recall that f̃kh,η′ = argminf∈F ∥f∥2Dk
h,η′

. We have ∥f̃kh,η′∥2Dk
h,η′
−∥fη̄′∥2Dk

h,η′
≤ 0,

which implies,

0 ≥ ∥f̃kh,η̄′∥2Dk
h,η̄′
− ∥fη̄′∥2Dk

h,η̄′

= ∥f̃kh,η̄′ − fη̄′∥2Zkh + 2
N∑
n=1

∑
(τ,h)∈[k−1]×[H]

[(
(f̃kh,η̄′)

(n)(sτh, a
τ
h)− f

(n)
η̄′ (sτh, a

τ
h)
)

(
(f

(n)
η̄′ (sτh, a

τ
h)− ψn

(
(Brτh)#η̄

′(sτh+1)
))]

≥ ∥f̃kh,η̄′ − fη̄′∥2Zkh − c
′N

1
2 (H + 1)(∥f̂kh,η̄′ − fη̄′∥Zkh + 2)√

log(2/δ) + logN (FN , 1/T )− 6N(H + 1).

Recall that if x2 − 2ax − b ≤ 0 holds for constant a, b > 0, then x ≤
a+
√
a2 + b ≤ c′ · a for some constant c′ > 0.
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Hence,

∥f̃kh,η′ − fη̄′∥Zkh ≤ c
′(N

1
2H
√
log(1/δ) + logN (FN , 1/T ))

for some constant c′ > 0. ■

Lemma (4.5.4). Let (FN )kh = {f ∈ FN |∥f − f̃kh,η̄∥2Zkh
≤ β(FN , δ)}, where

β(FN , δ) ≥ c′ ·NH2(log(T/δ) + logN (FN , 1/T ))

for some constant c′ > 0. Then with probability at least 1− δ/2, for all k, h ∈
[K]× [H], we have

ψn

(
(Brh(·,·))#[Phη̄

k
h+1](·, ·)

)
∈ (FN )kh

Proof. For all (k, h) ∈ [K]× [H],

S :=


{(

min{f (1)(·, ·) + bkh+1(·, ·), H}
)∣∣∣ f ∈ C(FN , 1/T )} ∪ {0} n = 1{(

min{f (n)(·, ·), H}
)∣∣∣ f ∈ C(FN , 1/T )} ∪ {0} 2 ≤ n ≤ N

is a (1/T )-cover of ψ1:N (η
k
h+1(·, ·)) where

ψ1:N (η
k
h+1(·, ·)) =


min{(fkh+1)

(1)(·, ·) + bkh+1(·, ·), H} n = 1 and h < H

min{(fkh+1)
(n)(·, ·), H} 2 ≤ n ≤ N and h < H

0N h = H

,

i.e., there exists ψ1:N (η) ∈ S such that ∥ψ1:N (η)− ψ1:N (η
k
h+1)∥∞,1 ≤ 1/T . This

implies

S̄ :=
{
ψ1:N

(
η(·, argmax

a∈A
ψ1(η(·, a)))

)
| ψ1:N (η) ∈ S

}
is a (1/T )-cover of ψ1:N (η̄

k
h+1) with log(|S̄|) ≤ logN (FN , 1/T ).

For each ψ1:N (η̄) ∈ S̄, let E(η̄, δ/2|S̄|T ) be the event defined in Lemma 4.5.3.
By union bound for all ψ1:N (η̄) ∈ S̄, we have Pr[

⋂
ψ1:N (η̄)∈S̄ E(η̄, δ/2|S̄|T )] ≥

1− δ/2T .
Let ψ1:N (η̄) ∈ S̄ such that ∥ψ1:N (η̄)− ψ1:N (η̄

k
h+1)∥∞,1 ≤ 1/T . Conditioned

on
⋂
sN (η̄)∈S̄ E(η̄, δ/2|S̄|T ) and by Lemma 4.5.3, we have∥∥∥f̃kh,η̄(·, ·)− ψ1:N

(
(Brh(·,·))#[Phη̄

k
h+1](·, ·)

)∥∥∥2
Zkh

≤ c′
(
NH2(log(T/δ) + logN (FN , 1/T ))

)
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for some constant c′ > 0.
By union bound for all (k, h) ∈ [K] × [H], we have the target sketch

ψ1:N

(
(Brh(·,·))#[Phη̄

k
h+1](·, ·)

)
∈ (FN )kh with probability 1− δ/2. ■

Lemma B.4.1. Let Qkh(s, a) := min{H, f̃kh (s, a) + bkh(s, a)} for some bonus
function bkh(s, a) for all (s, a) ∈ S×A. If bkh(s, a) ≥ w(1)((FN )kh, s, a) , then with
probability at least 1− δ/2,

Q∗
h(s, a) ≤ Qkh(s, a) and V ∗

h (s) ≤ V k
h (s)

for all (k, h) ∈ [K]× [H], for all (s, a) ∈ S ×A.

Proof. We use induction on h from h = H to 1 to prove the statement. Let E
be the event that for (k, h) ∈ [K]× [H], ψ1:N

(
(Brh(·,·))#[Phη̄

k
h+1](·, ·)

)
∈ (FN )kh.

By Lemma 4.5.4, Pr|E| ≥ 1− δ/2. In the rest of the proof, we condition on E .
When h = H + 1, the desired inequality holds as Q∗

H+1(s, a) = V ∗
H+1(s) =

QkH+1(s, a) = V k
H+1(s) = 0. Now, assume that Q∗

h+1(s, a) ≤ Qkh+1(s, a) and

V ∗
h+1(s) ≤ V k

h+1(s) for some h ∈ [H]. Then, for all (s, a) ∈ S ×A,

Q∗
h(s, a) = min{H, rh(s, a) + [PhV ∗

h+1](s, a)}
≤ min{H, rh(s, a) + [PhV k

h+1](s, a)}
≤ min{H, f̃kh (s, a) + w(1)(Fkh , s, a)}
= min{H,Qkh(s, a)− bkh(s, a) + w(1)(Fkh , s, a)}
≤ Qkh(s, a)

■

Lemma B.4.2 (Regret decomposition). With probability at least 1− δ/4, we
have

Reg(K) ≤
K∑
k=1

H∑
h=1

(2bkh(s
k
h, a

k
h) + ξkh),

where ξkh = [Ph(V k
h+1−V πk

h+1)](s
k
h, a

k
h)−(V k

h+1(s
k
h+1)−V πk

h+1(s
k
h+1)) is a martingale

difference sequence with respect to the filtration Fkh induced by the history Hk
h.

Proof. We condition on the above event E in the rest of the proof. For all
(k, h) ∈ [K]× [H], we have∥∥∥f̃kh,η̄(·, ·)− ψ1:N

(
(Brh(·,·))#[Phη̄

k
h+1](·, ·)

)∥∥∥2
Zkh
≤ β(FN , δ).
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Recall that (FN )kh = {f ∈ FN | ∥f − f̃kh,η̄∥2Zkh
≤ β(FN , δ)} is the confidence

region. Since ψ1:N

(
(Brh(·,·))#[Phη̄

k
h+1](·, ·)

)
∈ (FN )kh, then by the definition of

width function w(1)(Fkh , s, a), for (k, h) ∈ [K]× [H], we have

w(1)(Fkh , s, a) ≥
∣∣∣ψ1

(
(Brh(s,a))#[Phη̄

k
h+1](s, a)

)
− (f̃kh,η̄)

(1)(s, a)
∣∣∣

=
∣∣∣rh(s, a) + [PhV k

h+1](s, a)− (f̃kh,η̄)
(1)(s, a)

∣∣∣.
Recall that Q∗

h(·, ·) ≤ Qkh(·, ·).

Reg(K) =
K∑
k=1

V ⋆
1 (s

k
1)− V πk

1 (sk1)

≤
K∑
k=1

V k
1 (s

k
1)− V πk

1 (sk1)

=
K∑
k=1

Qk1(s
k
1, a

k
1)−Qπ

k

1 (sk1, a
k
1)

=

K∑
k=1

Qk1(s
k
1, a

k
1)− (r1(s

k
1, a

k
1) + [P1V

k
2 ](s

k
1, a

k
1)) + (r1(s

k
1, a

k
1)

+ [P1V
k
2 ](s

k
1, a

k
1))−Qπ

k

1 (sk1, a
k
1)

≤
K∑
k=1

w(1)((FN )k1, sk1, ak1)+bk1(sk1, ak1) + [P1(V
k
2 − V πk

2 )](sk1, a
k
1)

≤
K∑
k=1

w(1)((FN )k1, sk1, ak1)+bk1(sk1, ak1) + (V k
2 (s

k
2)− V πk

2 (sk2)) + ξk1

...

≤
K∑
k=1

H∑
h=1

(w(1)((FN )kh, skh, akh)+bkh(skh, akh) + ξkh)

≤
K∑
k=1

H∑
h=1

(2bkh(s
k
h, a

k
h) + ξkh)

■

It remains to bound
∑K

k=1

∑H
h=1 b

k
h(s

k
h, a

k
h), for which we will exploit fact

that FN has bounded eluder dimension.
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Lemma B.4.3. If bkh(s, a) ≥ w(1)((FN )kh, s, a) for all (s, a) ∈ S×A and k ∈ [K]
where

(FN )kh = {f ∈ FN | ∥f − f̃kh,η̄∥2Zkh ≤ β(F
N , δ)},

then
K∑
k=1

H∑
h=1

1{bkh(skh, akh) > ϵ} ≤
(
4β(FN , δ)

ϵ2
+ 1

)
dimE(FN , ϵ)

for some constant c > 0.

Proof. We first want to show that for any sequence {(s1, a1), . . . , (sκ, aκ)} ⊆
S × A, there exists j ∈ [κ] such that (sj , aj) is ϵ-dependent on at least L =
⌈(κ− 1)/dimE(FN , ϵ)⌉ disjoint subsequences in {(s1, a1), . . . , (sj−1, aj−1)} with
respect to FN . We demonstrate this by using the following procedure. Start with
L disjoint subsequences of {(s1, a1), . . . , (sj−1, aj−1)}, B1,B2, . . . ,BL, which are
initially empty. For each j, if (sj , aj) is ϵ-dependent on every B1, . . . ,BL, we
achieve our goal so we stop the process. Else, we choose i ∈ [L] such that (sj , aj)
is ϵ-independent on Bi and update Bi ← Bi ∪ {(sj , aj)}, j ← j + 1. Since every
element of Bi is ϵ-independent on its predecessors, |Bi| cannot get bigger than
dimE(FN , ϵ) at any point in this process. Therefore, the process stops at most
step j = LdimE(FN , ϵ) + 1 ≤ κ.

Now we want to show that if for some j ∈ [κ] such that bkh(sj , aj) > ϵ,
then (sj , aj) is ϵ-dependent on at most 4β(FN , δ)/ϵ2 disjoint subsequences in
{(s1, a1), . . . , (sj−1, aj−1)} with respect to FN . If bkh(sj , aj) > ϵ and (sj , aj) is
ϵ-dependent on a subsequence of {(s′1, a′1), . . . , (s′l, a′l)} ⊆ {(s1, a1), . . . , (sκ, aκ)},
it implies that there exists f, g ∈ FN with ∥f − f̃kh,η̄∥2Zkh

≤ β(FN , δ) and

∥g − f̃kh,η̄∥2Zkh
≤ β(FN , δ) such that f (1)(s′t, a

′
t) − g(1)(s′t, a′t) ≥ ϵ. By triangle

inequality, ∥f − g∥2Zkh
≤ 4β(FN , δ). On the other hand, if (sj , aj) is ϵ-dependent

on L disjoint subsequences in {(s1, a1), . . . , (sκ, aκ)}, then

4β(FN , δ) ≥ ∥f − g∥2Zk≥ ∥f
(1) − g(1)∥2Zk ≥ Lϵ

2

resulting in L ≤ 4β(FN , δ)/ϵ2. Therefore, we have (κ/dimE(FN , ϵ)) − 1 ≤
4β(FN , δ)/ϵ2 which results in

κ ≤
(
4β(F , δ)

ϵ2
+ 1

)
dimE(FN , ϵ)

■
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Lemma B.4.4 (Refined version of Lemma 10 in Wang et al. [101]). If bkh(s, a) ≥
w(1)((FN )kh, s, a) for all (s, a) ∈ S ×A and k ∈ [K], then

K∑
k=1

H∑
h=1

bkh(s
k
h, a

k
h) ≤ HdimE(FN , 1/T ).

Proof. We first sort the sequence {bkh(skh, akh)}(k,h)∈[K]×[H] in a decreasing order
and denote it by {e1, . . . , eT }(e1 ≥ e2 ≥ · · · ≥ eT ). By Lemma B.4.3, for any
constant M > 0 and et ≥ 1/

√
MT , we have

t ≤
(4β(FN , δ)

Me2t
+ 1
)
dimE(FN ,

√
Met) ≤

(4β(FN , δ)
Me2t

+ 1
)
dimE(FN , 1/T )

which implies

et ≤
( t

dimE(FN , 1/T )
− 1
)−1/2

√
4β(FN , δ)

M
,

for t ≥ dimE(FN , 1/T ). Since we have et ≤ H,

T∑
t=1

et =
T∑
t=1

et1{et < 1/
√
MT}+

T∑
t=1

et1{et ≥ 1/
√
MT, t < dimE(FN , 1/T )}

+
T∑
t=1

et1{et ≥ 1/
√
MT, t ≥ dimE(FN , 1/T )}

≤ 1√
M

+HdimE(FN , 1/T )

+
∑

dimE(FN ,1/T )≤t≤T

( t

dimE(FN , 1/T )
− 1
)−1/2

√
4β(FN , δ)

M

≤ 1√
M

+HdimE(FN , 1/T )

+ 2
( T

dimE(FN , 1/T )
− 1
)1/2

dimE(FN , 1/T )
√

4β(FN , δ)
M

=
1√
M

+HdimE(FN , 1/T ) +
√
16 · dimE(FN , 1/T ) · T · β(FN , δ)/M.

Taking M →∞,

K∑
k=1

H∑
h=1

bkh(s
k
h, a

k
h) ≤ HdimE(FN , 1/T ).

■

142



Theorem (4.5.5). Under Assumption 4.3.7, with probability at least 1−δ, SF-LSVI
achieves a regret bound of

Reg(K) ≤ 2HdimE(FN , 1/T ) + 4H
√
KH log(2/δ).

Proof. Recall that ξkh = [Ph(V k
h+1 − V πk

h+1)](s
k
h, a

k
h)− (V k

h+1(s
k
h+1)− V πk

h+1(s
k
h+1))

is a martingale difference sequence where E[ξkh|Fkh] = 0 and |ξkh| ≤ 2H. By
Azuma-Hoeffding’s inequality, with probability at least 1− δ/2,

K∑
k=1

H∑
h=1

ξkh ≤ 4H
√
KH log(2/δ).

Conditioning on the above event and Lemma B.4.4, we have

Reg(K) ≤ 2

K∑
k=1

H∑
h=1

bkh(s
k
h, a

k
h) +

K∑
k=1

H∑
h=1

ξkh

≤ 2HdimE(FN , 1/T ) + 4H
√
KH log(2/δ)

■
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Appendix C

Appendix of Chapter 5

C.1 Main Proof

Lemma (5.2.2). (Structural Condition for α-optimality) A reward function and
a soft optimal Q-function where π∗(·|s) is α-optimal have a one-to-one corre-
spondence with a state-dependent function β : S → R as follows,

Rα,π∗ = {r∗(s, a) = α log π∗(a|s) + β(s)− γEP[β(s
′)], ∀s, a| α ≥ 0, β : S → R}

Qπ∗
α,π∗ = {Qπ∗

∗ (s, a) = α log π∗(a|s) + β(s), ∀s, a| α ≥ 0, β : S → R}

Proof. (π∗ is α-optimal ⇐⇒ Qπ
∗

∗ (s, a) = α log π∗(a|s) + β(s) for some β : S →
R.)

Remark that the policy π∗ is α-optimal, if and only if there exists the optimal
soft Q-function satisfies the following relation:

π∗(a|s) = exp
( 1
α
(Qπ

∗
(s, a)− V π∗

(s))
)
,

V π∗
(s) = α log

∫
a∈A

exp
( 1
α
Qπ

∗
(s, a)da

)
.

Since V π∗
is merely a partition function, letting X(s, a) = exp

(
1
αQ

π∗
(s, a)

)
,
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we can derive

π∗(a|s) = X(s, a)∫
a∈AX(s, a)da

⇐⇒ X(s, a) = d(s)π∗(a|s) for some d : S → R
⇐⇒ Qπ

∗
(s, a) = α log π∗(a|s) + β(s) for some β : S → R,

where β is defined as β(s) = log d(s).
Using the soft Bellman equation, consider a reward function for any state-

dependent function β : S → R and substitute the expression of Qπ
∗
(s, a). Then,

we have:

r(s, a) := Qπ
∗
(s, a)− γEP[V

π∗
(s′)]

= α
(
log π∗(a|s) + β(s)− γEP[β(s

′)]
)

where π∗ and P are given. By the definition of optimal soft Q-function, we
recursively substitute the soft Bellman equation and sum over timesteps:

Qπ
∗
(s, a) = r(s, a) + Eτ∼Pπ∗

[∑
t>0

γt(r(st, at) + αHπ∗
(·|st))

∣∣∣s0 = s, a0 = a
]

= α log π∗(a|s) + β(s)− γEP[β(s1)]

+ Eτ∼Pπ∗
[∑
t>0

γt(β(st)− γEP[β(st+1)])
∣∣∣s0 = s, a0 = a

]
= α log π∗(a|s) + β(s)− γ2Eτ∼Pπ∗ [β(s2)]

+ Eτ∼Pπ∗
[∑
t>1

γt(β(st)− γEP[β(st+1)])
∣∣∣s0 = s, a0 = a

]
...

= α log π∗(a|s) + β(s).

■

Lemma (5.2.3). (Unique Fixed Point of Soft Bellman π-operator) Let π∗ is
α-optimal. For a given policy π and Q-function QπA ∈ Qπ for any (s, a) ∈ S ×A,
define the Bellman π-operator T π∗ : Qπ → Qπ where

T π∗ QπA(s, a) := Qπ
∗

∗ (s, a)− γEP

[
α
(
Hπ∗

(·|s′)−Hπ(·|s′)
)

+Eπ∗ [Qπ
∗

∗ (s′, a′)]− Eπ[QπA(s′, a′)]
]
.

Then, T π∗ has a unique fixed point Qπ∗ .
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Proof. Consider QπA, Q
π
B ∈ Qπ. Then

sup
s,a

∣∣∣T π∗ QπA(s, a)− T π∗ QπB(s, a)∣∣∣ ≤ sup
s,a

∣∣∣γEP

[
Eπ[QπA(s′, a′)]− Eπ[QπB(s′, a′)]

]∣∣∣
= γ sup

s′,a′

∣∣∣QπA(s′, a′)−QπB(s′, a′)∣∣∣
Hence, T π∗ is a γ-contraction for any QπA, Q

π
B ∈ Qπ. Since Qπ is a complete

metric space, by using Banach fixed point theorem, T π∗ has a unique fixed point.

Notice that Qπ
∗

∗ and Qπ∗ satisfies soft Bellman equation respectively, i.e.,

Qπ
∗

∗ (s, a) = EP

[
r∗(s, a) + γEπ∗ [Qπ

∗
∗ (s′, a′) + αHπ∗

(·|s′)]
]
,

Qπ∗ (s, a) = EP

[
r∗(s, a) + γEπ[Qπ∗ (s′, a′) + αHπ(·|s′)]

]
∀(s, a) ∈ S ×A.

Then,

T π∗ Qπ∗ (s, a)

= Qπ
∗

∗ (s, a)− γEP

[
α
(
Hπ∗

(·|s′)−Hπ(·|s′)
)
+ Eπ∗ [Qπ

∗
∗ (s′, a′)]− Eπ[Qπ∗ (s′, a′)]

]
= Qπ

∗
∗ (s, a)− γEP

[
αHπ∗

(·|s′) + Eπ∗ [Qπ
∗

∗ (s′, a′)]−
(
αHπ(·|s′) + Eπ[Qπ∗ (s′, a′)]

)]
= EP

[
r∗(s, a) + γEπ[Qπ∗ (s′, a′) + αHπ(·|s′)]

]
= Qπ∗ (s, a) ∀(s, a) ∈ S ×A.

Hence, Qπ∗ is a unique fixed point of T π∗ . ■

Theorem (5.2.4). If a policy π∗ is α-optimal, then for any policy π,

Qπ
∗

∗ (s, a)−Qπ∗ (s, a) = αD̄KL(π||π∗; s, a)

where the sequential forward KL divergence is defined as

D̄KL(π||π′; s, a) := Eτ∼Pπs,a

[∑
l>0

γlDKL(π(·|sl)||π′(·|sl))
]
.

Here, Pπs,a is the distribution of trajectories τ = (s0, a0, · · · , sl, al, · · · ) generated
by policy π and the transition P, starting at (s0, a0) = (s, a).

Proof. Let Q̃π∗ (s, a) = Qπ
∗

∗ (s, a) − α
∑

t>0 γ
tEτ∼Pπ

[
DKL(π(·|st)||π∗(·|st))

∣∣∣s0 =
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s, a0 = a
]
for all (s, a) ∈ S ×A. Then

T π∗ Q̃π∗ (s, a)

= Qπ
∗

∗ (s, a)− γEP

[
α
(
Hπ∗

(·|s′)−Hπ(·|s′)
)
+ Eπ∗ [Qπ

∗
∗ (s′, a′)]− Eπ[Q̃π∗ (s′, a′)]

]
= Qπ

∗
∗ (s, a)− γEP

[
α
(
Hπ∗

(·|s′)−Hπ(·|s′)
)
+ Eπ∗ [α log π∗(s′, a′) + β(s′)]

− Eπ
[
Qπ

∗
∗ (s′, a′)− α

∑
t>0

γtEτ∼Pπ
[
DKL(π(·|st)||π∗(·|st))

]∣∣∣s1 = s′, a1 = a′
]]

= Qπ
∗

∗ (s, a)− γEP

[
β(s′)− αHπ(·|s′)− Eπ[Qπ

∗
∗ (s′, a′)]

+ αEπ
[∑
t>0

γtEτ∼Pπ
[
DKL(π(·|st)||π∗(·|st))

]∣∣∣s1 = s′, a1 = a′
]]

= Qπ
∗

∗ (s, a)− αγEP

[
DKL(π(·|s′)||π∗(·|s′))

]
− α

∑
t>1

γtEτ∼Pπ
[
DKL(π(·|st)||π∗(·|st))

∣∣∣s0 = s, a0 = a
]

= Qπ
∗

∗ (s, a)− α
∑
t>0

γtEτ∼Pπ
[
DKL(π(·|st)||π∗(·|st))

∣∣∣s0 = s, a0 = a
]

= Q̃π∗ (s, a)

which implies that Q̃π∗ is a unique fixed point of T π∗ . In Lemma 5.2.3, we observe
that T π∗ has a unique fixed point Qπ∗ . Hence,

Qπ∗ (s, a) = Qπ
∗

∗ (s, a)− α
∑
t>0

γtEτ∼Pπ
[
DKL(π(·|st)||π∗(·|st))

∣∣∣s0 = s, a0 = a
]
■

C.2 Further Theoretical Analysis & Discussion

C.2.1 Mathematical derivation of PPL framework

We recall the PPL model and objective:

P (π+,π−)
πψ

[ζ+ ≻ ζ−] = σ

(
−
∑
t≥0

Regπ
+

πψ
(s+t , a

+
t )− Regπ

−
πψ

(s−t , a
−
t )

)
,

LPPL(πψ;D) = −E(ζ+,ζ−,y,p)∼D

[
log σ

(
−
∑
t≥0

Regπ
+

πψ
(s+t , a

+
t )− Regπ

−
πψ

(s−t , a
−
t )

)]
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where

−Regππ∗(st, at) := −(V π∗
∗ (st)−Qπ∗ (st, at)).

Here, a negative regret at (st, at) can be decomposed into two components:

−Regππ∗(st, at) = α
(

log π∗(at|st)︸ ︷︷ ︸
increase likelihood

−Eτ∼Pπst,at

[∑
l>0

γlDKL(π(·|sl)||π∗(·|sl))
]

︸ ︷︷ ︸
decrease sequential forward KL divergence

)

Proof. By the definition of regret,

− Regππ∗(st, at)

:= −(V π∗
∗ (st)−Qπ∗ (st, at)).

= −
(
Eπ∗ [Qπ

∗
∗ (st, a)− α log π∗(·|st)]

)
+Qπ

∗
∗ (st, at)− αD̄KL(π||π∗; st, at)

=����−β(st) + α log π∗(at|st) +���β(st)− αD̄KL(π||π∗; st, at)

= α
(
log π∗(at|st)− D̄KL(π||π∗; st, at)

)
■
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C.3 Variants of PPL and Baselines

BC: BC (Behavior Cloning) is the initial stage in RLHF, where the policy

is trained to maximize the likelihood of the demonstrated actions given the

corresponding states:

LBC(πψ;D) = −Eζ∼D

[∑
t≥0

log πψ(at|st)
]

SFT: SFT (Supervised Fine Tuning) is trained to maximize the likelihood of

the demonstrated actions given the corresponding states in preferred segments:

LSFT(πψ;D) = −Eζ+∼D

[∑
t≥0

log πψ(a
+
t |s

+
t )
]

CPL: CPL [44] is our primary baseline, where the optimal advantage is defined

as the score function:

SCPL(πψ; ζ
+)− SCPL(πψ; ζ

−) =
∑
t≥0

log
πψ(a

+
t |s

+
t )

πψ(a
−
t |s

−
t )
.

The objective is to minimize the following loss function:

LCPL(πψ;D) = −E(ζ+,ζ−)∼D

[
log σ

(
SCPL(πψ; ζ

+)− SCPL(πψ; ζ
−)
)]

A key issue raised in CPL is assigning high weights to OOD actions while

still maintaining the same optimal policy. This leads to extrapolation too much

into unseen states, ultimately degrading performance. To mitigate this, an

asymmetric regularizer is introduced:

SCPL(λ)(πψ; ζ
+)− SCPL(λ)(πψ; ζ

−) = SCPL(πψ; ζ
+)− λSCPL(πψ; ζ

−)

=
∑
t≥0

log
πψ(a

+
t |s

+
t )

πψ(a
−
t |s

−
t )

λ
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PPL: Based on policy deviation lemma in Theorem 5.2.4, PPL extends CPL

by incorporating entropy regularization and KL divergence-based constraints,

making preference learning more structured. The score function includes multiple

terms:

SPPL(πψ; ζ
+, π+)− SPPL(πψ; ζ−, π−)

=
∑
t≥0

[
log

πψ(a
+
t |s

+
t )

πψ(a
−
t |s

−
t )

+
1

L

L∑
l=1

(
−DKL(π

+(·|s+t+l)||πψ(·|s
+
t+l)) +DKL(π

−(·|s−t+l)||πψ(·|s
−
t+l))

)]
,

and the objective function is:

LPPL(πψ;D) = −E(ζ+,ζ−)∼D

[
log σ

(
SPPL(πψ; ζ

+)− SPPL(πψ; ζ−)
)]

The score function of PPL with the same asymmetric regularizer as CPL is

given by:

SPPL(λ)(πψ; ζ
+, π+)− SPPL(λ)(πψ; ζ−, π−)

= SPPL(πψ; ζ
+, π+)− λSPPL(πψ; ζ−, π−)

=
∑
t≥0

[
log

πψ(a
+
t |s

+
t )

πψ(a
−
t |s

−
t )

λ

+
1

L

L∑
l=1

(
−DKL(π

+(·|s+t+l)||πψ(·|s
+
t+l)) + λDKL(π

−(·|s−t+l)||πψ(·|s
−
t+l))

)]
,

PPL-deterministic: If policy-label is unknown, we apply deterministic pseudo-

labels by assuming that each segment was generated by a deterministic policy

that executed the observed action.

SPPL-d(πψ; ζ
+)− SPPL-d(πψ; ζ−)

=
∑
t≥0

[
log

πψ(a
+
t |s

+
t )

πψ(a
−
t |s

−
t )

+
1

L

L∑
l=1

log
πψ(a

+
t+l|s

+
t+l)

πψ(a
−
t+l|s

−
t+l)

]
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C.4 Implementation Details

C.4.1 Hyperparameter Setting

Table C.1: Hyperparameter settings for offline implementation.

Hyperparameter State

Total Training Steps 500k

Pre-training Steps (except P-IQL) 200k

Batch Size 96

Segment Size 64

Fixed log std -1.5

Actor Dropout 0.0 (0.25 for CPL reproduce)

Architecture [256, 256] MLP Gaussian

Table C.2: Hyperparameters for online implementation

Hyperparameter State

Total Environment Steps 1m

Segment Size 32

Fixed log std -1.0

Query Frequency(steps) 1000

Policy update Frequency(steps) 1000

Episode Length 250

Learning rates 3e-4

Temperature α 0.1

Asymmetric regularizer λ 1.0

BC weights 0

γ 1

Actor Dropout 0.0

Architecture [256, 256] MLP Gaussian
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Table C.3: Hyperparameters for PPL, CPL, SFT, and P-IQL

Hyperparameter PPL CPL SFT P-IQL

Learning rates 1e-4 1e-4 1e-4 1e-4

Temperature α 0.1 0.1 0.1 0.1

Asymmetric regularizer λ 0.5 0.5 - -

BC weights 0 0 0 0

γ 1 1 1 1

Number of Parameters 76k 76k 76k 859k

C.4.2 MetaWorld Benchmark

Our experiments were conducted on six MetaWorld environments: Bin-Picking,

Button-Press, Door-Open, Drawer-Open, Plate-Slide, and Sweep-Into.

Each task requires precise control of a robotic arm to interact with objects

in a structured environment. The diverse task set includes object relocation,

pushing, pulling, and fine-grained manipulation, making it a suitable testbed

for reinforcement learning from preference-based feedback.

Each environment is designed with a handcrafted reward function tailored

to its objective. Instead of human annotations, we trained a critic using SAC

to assign labels. During our experiments, we observed that return did not

always align well with success rates. In case of Door-Open, despite achieving

the highest return, PPL exhibited a relatively low success rate. This implies that

the environment allows reward exploitation due to the imprecise design of the

reward function.
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Figure C.1: Visualization of the MetaWorld Benchmark Tasks.

C.4.3 Reproducibility Check

For a fair comparison, we first verified the reproducibility of CPL using the

Metaworld State Dense and State Sparse datasets provided by Hejna et al.

[44] and evaluated the performance of PPL on these datasets. We used the official

CPL implementation (https://github.com/jhejna/cpl) without modifications

and ensured reproducibility by fixing the random seed ([123,231,312,321]). The

figure below presents the PPL performance alongside the reproduced CPL results.

The horizontal dashed line represents the scores reported in CPL, confirming

the reproducibility of the algorithm. The vertical dashed line indicates the point

where behavior cloning (BC) training stops.

In all environments except Plate-Slide-v2, the reproduced CPL perfor-

mance closely matches the reported values, with deviations attributed to seed

variability. Across the provided datasets, PPL exhibits comparable overall per-

formance to CPL.
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Table C.4: Success rates of all methods on six tasks from the MetaWorld across
different datasets from Hejna et al. [44]. Each score is reported as the highest
average performance across four seeds over a 200-episode evaluation window.

Bin Picking Button Press Door Open Drawer Open Plate Slide Sweep Into

State
2.5k Dense

CPL(Reported) 80.0 ± 2.5 24.5 ± 2.1 80.0 ± 6.8 83.6 ± 1.6 61.1 ± 3.0 70.4 ± 3.0
CPL(Reproduced) 76.0 ± 4.1 24.9 ± 4.7 75.5 ± 6.0 87.6 ± 2.8 45.3 ± 10.4 74.5 ± 3.4
PPL 77.7 ± 2.6 30.2 ± 7.8 76.7 ± 7.1 84.2 ± 2.4 41.7 ± 3.2 79.2 ± 5.5

State
20k Sparse

CPL(Reported) 83.2 ± 3.5 29.8 ± 1.8 77.9 ± 9.3 79.1 ± 5.0 56.4 ± 3.9 81.2 ± 1.6
CPL(Reproduced) 69.1 ± 21.4 25.5 ± 5.3 74.4 ± 3.5 80.9 ± 4.5 41.1 ± 4.9 80.5 ± 2.8
PPL 83.0 ± 3.7 25.4 ± 2.8 72.2 ± 1.7 79.0 ± 4.0 42.9 ± 1.6 76.0 ± 2.0

Figure C.2: Reproducibility check on State Dense dataset
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Figure C.3: Reproducibility check on State Sparse dataset
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C.4.4 Offline dataset generation and its distribution

We construct a heterogeneous dataset by incorporating various policies, following

the dataset generation method used in Hejna et al. [44]. Specifically, we load

suboptimal SAC checkpoints with success rates of 20% and 50% using the

same approach. During rollouts, we introduce Gaussian noise with a standard

deviation of 0.3 and rolling out 20,000 episodes, each lasting 250 steps, using

their suboptimal soft actor-critic (SAC) [41] checkpoints, which achieved an

approximate 50% success rate.

While following this data generation procedure, we found a step in the

reference code where transitions following a success signal were explicitly trun-

cated. This truncation was intended to prevent segments from being overly

dominated by successful transitions. However, we opted to retain the raw data

without truncation. As a result, the distribution of our 50% success rate dataset

differs from that of Hejna et al. [44]. To highlight this difference, we provide a

visualization of the data distribution across environments.

For our experiments, we generated the following four datasets:

• Homogeneous Dense

• Homogeneous Sparse

• Hetereogeneous Dense

• Heterogeneous Sparse

In the additional experimental setting, we kept all aspects—such as the hy-

perparameters of all algorithms, the SAC critic, and the label generation

method—identical to the original setup, modifying only the dataset. Inter-

estingly, CPL exhibited significant performance variations depending on the

dataset, whereas PPL demonstrated robust performance across diverse datasets.
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The robustness of PPL’s performance can be attributed to its ability to adjust the

magnitude of feedback for diverse policies and accurately reflect the likelihood

of each segment.

Figure C.4: Comparison of return distributions across environments for different
dataset configurations. The histograms illustrate the distribution of the partial
returns for segments with 20% and 50% success rates generated using our method
(red and blue) and the 50% success rate dataset from Hejna et al. [44] (gray).
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C.4.5 Online Implementation

In the online setting, we use a Gaussian actor with a fixed standard deviation to

maintain consistency with the offline setting. The model is trained from scratch

without any pretraining. The online learning process consists of three phases.

First, rollouts are conducted in the environment for a fixed number of steps to

generate trajectory data. Next, preference queries and labels are constructed

from segments of these trajectories. Finally, the policy is updated using the

generated preference query data.

During the rollout phase, actions are sampled from a stochastic policy

without additional exploration strategies. In the query generation phase, two

policies are selected for comparison, with one always being the most recent

and the other randomly chosen from the last 25 policies. Segments from the

most recent policy are first over-sampled at three times the required number,

then ranked based on their regret scores relative to the current policy. The

top-ranked segments are retained, while segments from the other policy are

sampled uniformly at random. Preference labels are assigned according to the

method described in Appendix D.2 of Hejna et al. [44].

In the policy update phase, stochastic gradient updates are applied over

a fixed number of epochs using all preference query data collected up to that

point. Unlike reward-based preference learning methods, which predominantly

generate preference queries early in training and subsequently optimize policies

using a learned reward function and an RL algorithm, the online PPL algorithm

continuously collects preference queries throughout the entire training process.

This ensures sustained policy improvement over time.

To reproduce the online baseline PEBBLE algorithm, we utilized the official

B-Pref implementation (https://github.com/rll-research/BPref) and ad-
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hered to the hyperparameter settings and random seeds reported in the original

paper. Our online experiments were performed on five tasks from the Meta-

World benchmark: Button Press, Door Open, Drawer Open, Plate Slide,

and Sweep Into. All hyperparameters were kept consistent across tasks, except

for the total number of preference queries, which was set to match the values

specified for each environment in the PEBBLE paper.
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C.5 Experimental Results on Homogeneous/ Hetero-
geneous Datasets (Section 5.3.2)

C.5.1 Homogeneous Dense Offline Dataset

Figure C.5: Performance comparison of different methods on the Homogeneous
Dense dataset across six MetaWorld tasks. The top row shows the success rate
over training iterations, while the bottom row presents the corresponding return
values.
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C.5.2 Homogeneous Sparse Offline Dataset

Figure C.6: Performance comparison of different methods on the Homogeneous
Sparse dataset across six MetaWorld tasks.
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C.5.3 Heterogeneous Dense Offline Dataset

Figure C.7: Performance comparison of different methods on the Heterogeneous
Dense dataset across six MetaWorld tasks.
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C.5.4 Heterogeneous Sparse Offline Dataset

Figure C.8: Performance comparison of different methods on the Heterogeneous
Sparse dataset across six MetaWorld tasks.
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C.6 Comparison with Deterministic Pseudo-labels (Sec-
tion 5.3.3)

C.6.1 Homogeneous Dense Offline Dataset

Figure C.9: Comparison of PPL and PPL-deterministic on the Homogeneous

Dense Offline Dataset.
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C.6.2 Heterogeneous Dense Offline Dataset

Figure C.10: Comparison of PPL and PPL-deterministic on the Heterogeneous
Dense Offline Dataset.
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C.7 Experimental Results on Online Implementation
(Section 5.3.4)

C.7.1 Online Learning Curves

We evaluated the performance of PPL in an online setting across five MetaWorld

tasks. The number of preference queries (#Pref) varied for each environment

based on the quantities used in PEBBLE, and these differences are illustrated in

each plot.

Figure C.11: PPL and PEBBLE learning curves in online learning.
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C.7.2 Ablation on Preference Query Count

We evaluate the performance of PPL over iterations with different numbers of

preference queries (#Pref). Overall, increasing the number of preference queries

leads to improved performance, demonstrating the benefit of richer preference

feedback in online learning.

Figure C.12: Effect of preference query count in online learning.
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C.7.3 Ablation on Rollout Length

We analyze the impact of different rollout lengths L on the performance of PPL

in an online RLHF setting across five MetaWorld tasks. Each plot compares the

success rate over training iterations for three rollout lengths: L = {5, 10, 20}.

Figure C.13: Effect of rollout length in online learning.
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170



perspective on reinforcement learning. In International Conference on

Machine Learning, pages 449–458. PMLR, 2017.

[13] Marc G Bellemare, Will Dabney, and Mark Rowland. Distributional

Reinforcement Learning. MIT Press, 2023.

[14] Han Bleichrodt and Peter P Wakker. Regret theory: A bold alternative

to the alternatives. The Economic Journal, 125(583):493–532, 2015.

[15] Han Bleichrodt, Andrea Cillo, and Enrico Diecidue. A quantitative mea-

surement of regret theory. Management Science, 56(1):161–175, 2010.

[16] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete

block designs: I. the method of paired comparisons. Biometrika, 39(3/4):

324–345, 1952.

[17] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint

arXiv:1606.01540, 2016.

[18] Daniele Calandriello, Daniel Guo, Remi Munos, et al. Human alignment

of large language models through online preference optimisation. In arXiv

preprint arXiv:2403.08635, 2024.

[19] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Ku-

mar, and Marc G Bellemare. Dopamine: A research framework for deep

reinforcement learning. arXiv preprint arXiv:1812.06110, 2018.

[20] Richard Y Chen, Szymon Sidor, Pieter Abbeel, and John Schulman. Ucb

exploration via q-ensembles. arXiv preprint arXiv:1706.01502, 2017.

171



[21] Yu Chen, Xiangcheng Zhang, Siwei Wang, and Longbo Huang. Provable

risk-sensitive distributional reinforcement learning with general function

approximation. arXiv preprint arXiv:2402.18159, 2024.

[22] Zheng Chen, Shuang Li, Xiaoyang Qiu, and Chi Jin. Regret analysis for

reinforcement learning from preferences. arXiv preprint arXiv:2402.11487,

2024.

[23] Taehyun Cho, Seungyub Han, Heesoo Lee, Kyungjae Lee, and Jungwoo Lee.

Pitfall of optimism: Distributional reinforcement learning by randomizing

risk criterion. arXiv preprint arXiv:2310.16546, 2023.

[24] Yinlam Chow and Mohammad Ghavamzadeh. Algorithms for cvar opti-

mization in mdps. Advances in Neural Information Processing Systems,

27, 2014.

[25] Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-

sensitive and robust decision-making: a cvar optimization approach. Ad-

vances in Neural Information Processing Systems, 28, 2015.

[26] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco

Pavone. Risk-constrained reinforcement learning with percentile risk

criteria. Journal of Machine Learning Research, 18(1):6070–6120, 2017.

[27] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg,

and Dario Amodei. Deep reinforcement learning from human preferences.

Advances in neural information processing systems, 30, 2017.

[28] Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better

exploration with optimistic actor-critic. arXiv preprint arXiv:1910.12807,

2019.

172



[29] William R Clements, Bastien Van Delft, Benôıt-Marie Robaglia, Reda Bahi
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timal reinforcement learning for linear mixture markov decision processes.

In Conference on Learning Theory, pages 4532–4576. PMLR, 2021.

[115] Fan Zhou, Zhoufan Zhu, Qi Kuang, and Liwen Zhang. Non-decreasing

quantile function network with efficient exploration for distributional

reinforcement learning. arXiv preprint arXiv:2105.06696, 2021.

[116] W. Zhou et al. Enhancing rlhf with weighted preference optimization

(wpo). In EMNLP 2024, pages 475–491. Association for Computational

Linguistics, 2024.

[117] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle

of maximum causal entropy. Carnegie Mellon University, 2010.

[118] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford,

Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language

models from human preferences. arXiv preprint arXiv:1909.08593, 2019.

184



초록

불확실성 속 인간 피드백 기반 순차적 의사결정을 다루는 본 논문은 분포 강화학

습과 인간 피드백 기반 강화학습이라는 두 가지 핵심 연구 분야에 초점을 맞춘다.

분포 강화학습은 위험에 민감한 제어에서, 인간 피드백 기반 강화학습은 인간 선

호도 정렬에서 출발했지만, 두 분야 모두 불확실성과 불완전한 정보가 필연적인

환경에서원칙적인의사결정을가능하게하는알고리즘을설계해야한다는공통된

과제를 공유한다. 본 논문은 이러한 도전 과제들을 후회 최소화라는 통일된 관점

에서 해석하고, 에이전트의 행동을 인간의 의사결정 구조에 정렬하기 위한 이론적

프레임워크와 실용적인 알고리즘 원리를 제시한다.

논문의 첫 번째 부분에서는 분포 강화학습 분야에서의 탐색 문제를 재조명한

다. 기존의 ‘불확실성에 대한 낙관주의’는 반환 분포의 분산 추정치를 활용하지만,

이는 인식론적 불확실성과 내재적 불확실성을 혼동하여 지속적인 위험 추구 편향

과 편향된 데이터 수집을 야기하는 문제점이 발생함을 확인하였다. 이를 해결하기

위해 우리는 외란된 퀀타일 정규화 알고리즘(Perturbed Quantile Regression)을

제안한다.이는왜곡된위험척도에무작위외란이적용된척도를도입하여행동을

선택하는 방식으로, 이론적으로 편향된 탐색을 피하면서 본래의 최적점에 도달하

는것을증명하며, 55개의아타리게임을포함한다양한벤치마크에서기존의분산

기반 탐색 방법보다 우수한 성능을 달성함을 보였다.

두번째부분은분포강화학습에서분포의무한차원성이라는근본적인난제를

다룬다. 기존 연구들은 ‘벨만 닫힘(Bellman closedness)’ 개념을 도입했으나, 이는

온라인 학습에서 유한 개의 표본만으로 통계적 함수들이 편향 없이 업데이트될 수

있음을 보장하지 못하는 한계가 존재한다. 이에 우리는 벨만 업데이트에서 보존될

뿐만 아니라 유한 개의 샘플로부터 편향 없이 추정 가능한 기능을 특징짓는 ’벨만

비편향성(Bellman Unbiasedness)’ 개념을 제안한다. 우리의 분석은 오직 모멘트
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함수족만이이두가지특성을만족함을밝히고,이를바탕으로일반적인가치함수

근사에서도 이론적으로 효율성을 갖춘 최초의 분포형 강화학습 알고리즘인 ‘통계

적 함수 기반 최소제곱 가치 반복 알고리즘(Statistical Functional Least-Squares

Value Iteration)’을설계하였다.이는이전연구들보다향상된 Õ(dEH
3/2
√
K)라는

타이트한 후회 상한선을 달성한다.

논문의 세 번째 부분은 인간의 수작업 보상 대신 선호도 피드백으로부터 학습

하는 인간 피드백 기반 강화학습을 다룬다. 직접 선호도 최적화(Direct Preference

Optimization)와 같은 최근 프레임워크는 보상 모델 없이 정책을 직접 최적화

하지만, 모든 데이터가 최적의 정책에 의해 생성되었다고 가정하는 ’우도 불일치

(likelihood mismatch)’ 문제를 내재적으로 전제하고 있음을 밝힌다. 이를 해결

하기 위해 우리는 후회 개념을 활용하여 인간 선호도를 재해석하고 행동 정책

레이블을 학습 과정에 명시적으로 통합하는 ‘정책 레이블 기반 선호학습(Policy-

labeled Preference Learning)’을 제안한다. 제안하는 알고리즘은 선호되는 데이터

에 정책을 맞추고 덜 선호되는 데이터와 대조하는 ’대조적 KL 정규화’를 도입한다.

이론적으로 주어진 최적 정책에 대해 보상체계의 등가 클래스를 제공하며, 후회

가 유일하게 정의됨에 따른 통계적 강건성을 입증하였다. 실험적으로 로봇 조작

작업에서 오프라인 학습 환경에서의 인간 피드백 기반 강화학습의 성능을 크게

향상시키고 온라인 학습 환경에서 강건함을 입증하였다.

요약하자면, 본 논문은 (1) 분포 강화학습의 편향된 탐색 문제를 해결하는 알

고리즘, (2) 일반적인 가치 함수 근사에서 온라인 분포 업데이트를 위한 최초의

증명 가능한 효율적 프레임워크를 제공하는 벨만 비편향성 개념과 이에 기반한

알고리즘, (3) 후회 기반 선호도 모델링을 통해 인간 피드백 기반 강화학습의 우도

불일치 문제를 해결하는 알고리즘을 제시한다. 이러한 연구들은 후회 최소화를

이론과 실무를 아우르는 통일된 원리로 정립하며, 불확실성 속에서도 신뢰성 높고

인간과 정렬된 인공지능 의사결정을 가능하게 하는 기반을 제공한다.

주요어: 강화학습, 분포 강화학습, 인간 피드백 기반 강화학습, 후회 최소화

학번: 2020-24770
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니다. 먼저, 많은 시간을 함께하고 든든한 버팀목이 되어주신 승엽이 형에게 깊은

감사를 드립니다. 연구실이 안정적이고 활기찬 공간이 될 수 있도록 조성해주신

노력과 연구에 대한 열정을 옆에서 지켜보며, 저 또한 그러한 모습을 본받고자

부단히 노력하게 된 것 같습니다. 또한 석훈, 수환, 도혁, 그리고 김도형 연구원과

함께한 시간들은 연구자로서 누릴 수 있는 가장 큰 행복이자 행운이었습니다. 서

로의연구를진지하게논의하고,다양한아이디어를나누며함께성장할수있었던

경험은 연구자로서 가장 소중한 기억으로 남을 것 같습니다.

연구뿐만 아니라 지친 일상의 무게를 나누며 큰 힘이 되어준 상우, 지윤, 주환,

형근,형준,세환이를비롯해뉴미연생활을함께한승찬이형,연군,정은누나, 302

동에서 늘 반갑게 맞이해주는 지민, 민해, 재인, 진우, 나경, 정민 등 연구실의 모든

분들에게 고맙다는 말을 전합니다. 여러 어려운 상황 속에서도 각자 맡은 역할에

책임감을 다하며 묵묵히 연구를 병행해 나가는 분들과 즐겁게 연구실 생활할 수

있었던건되돌아보면큰인복이라생각합니다.아울러연구실밖에서도변치않는

우정으로 곁을 지켜준 준홍이 형, 시현이 형, 용기, 영현, 연훈, 재우, 재현, 솔찬,

원모에게도 고마움을 전합니다. 연구가 풀리지 않아 답답할 때마다 세상과 연결된

숨구멍이 되어준 친구들 덕분에, 박사 과정이라는 긴 터널을 끝까지 웃으며 지날

수 있었습니다.

그 누구보다, 저를 믿어주시고 끝까지 든든히 응원해 주신 부모님과 동생에게

가장 깊은 감사를 전하고 싶습니다. 부족함 없이 연구에 몰두할 수 있도록 가족의

끝없는 사랑과 격려가 있었기에, 고된 박사 과정을 묵묵히 버텨낼 수 있었습니다.

이제 사회로 나아가 그 은혜에 조금씩 보답하고자 하니, 다들 건강한 모습으로
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오래도록 제 곁을 지켜봐 주셨으면 합니다.

마지막으로, 긴 여정을 마치고 새로운 시작을 앞둔 제 자신에게도 작은 다짐

을 남기고 싶습니다. 졸업의 기쁨도 잠시, 불확실한 미래에 대한 또다른 두려움과

걱정이 밀려오지만, 지금까지 그래왔던 것처럼 제 자신을 믿고 후회 없이 최선을

다하며 한 걸음씩 나아가고자 합니다. 인공지능의 시대에 학문의 의미가 희미해져

간다 하지만, 오히려 그렇기에 진리를 추구하고 인간적인 가치를 전하는 연구의

길은 더욱 소중하다고 믿습니다. 연구하며 느끼는 모든 감정을 불행이 아닌 축복

으로 여기며, 이 과정을 오롯이 즐길 줄 아는 사람이 되겠습니다. 훗날 이 글을

다시 읽을 때, 지금의 열정과 다짐이 헛되지 않았음을 증명하는 삶을 살아가도록

노력하겠습니다.
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