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Abstract

Sequential decision-making under uncertainty is a fundamental problem in arti-
ficial intelligence. Real-world environments rarely provide well-defined rewards
or complete information, and feedback is often qualitative, subjective, or in-
consistent. As Al systems are increasingly deployed in high-stakes domains
such as finance, autonomous driving, and human-robot interaction, it becomes
crucial to develop principled algorithms that can act reliably under uncertainty
and align with human intentions. However, existing reinforcement learning
(RL) paradigms, which lack explicit modeling of uncertainty, rely primarily on
expectation-based objectives and handcrafted rewards, leaving a substantial gap
between theoretical optimality and human-aligned behavior.

This dissertation addresses these challenges through two complementary
perspectives—distributional reinforcement learning (DistRL) and reinforcement
learning from human feedback (RLHF)—and unifies them under a common
theoretical lens of regret minimization. The central goal is to establish a reliable
foundation for learning human-aligned decision-making by interpreting the
probabilistic nature inherent in human feedback.

The first part revisits the exploration problem in DistRL. Existing approaches
based on “optimism under uncertainty” rely on estimates of return variance
but conflate epistemic and aleatoric uncertainties, which induces persistent
risk-seeking bias and distorted data collection. To address this, we propose the
Perturbed Quantile Regression (PQR) algorithm, which introduces randomized
perturbations of distorted risk measures to guide action selection. We theoret-

ically establish that PQR avoids biased exploration and converges to the true



optimum, and empirically show that it outperforms variance-based exploration
methods across diverse benchmarks, including 55 Atari games.

The second part tackles the fundamental challenge of infinite dimensionality
in DistRL. Prior work introduced the notion of Bellman closedness, but this fails
to guarantee unbiased updates from finite samples in online learning. We propose
the concept of Bellman Unbiasedness, which characterizes functionals that are
not only preserved under Bellman updates but also estimable without bias from
finite samples. Our analysis shows that only moment functionals satisfy both
conditions. Building on this result, we design the first provably efficient DistRL
algorithm under general value function approximation—Statistical Functional
Least-Squares Value Iteration (SF-LSVI)—which achieves a tight regret bound
of O(dpH*?V/K), improving upon prior results.

The third part turns to RLHF, where agents learn from preference feedback
instead of handcrafted rewards. Recent frameworks such as Direct Preference
Optimization (DPO) optimize policies directly without an explicit reward model
but implicitly assume that all preference data are generated by the optimal policy,
leading to a likelihood mismatch. To overcome this, we reinterpret preferences
through the lens of regret and propose Policy-labeled Preference Learning (PPL),
which explicitly integrates policy labels into the learning process. Our method
introduces contrastive KL regularization that aligns policies with preferred data
while contrasting against less-preferred data. We theoretically show that PPL
characterizes an equivalence class of reward models consistent with a given
optimal policy and establishes statistical robustness via uniquely defined regret.
Empirically, PPL substantially improves RLHF performance in offline robotic

manipulation tasks and demonstrates robustness in online learning.

Collectively, these contributions establish regret minimization as a unifying

theoretical principle that bridges distributional modeling and human feedback,

ii



linking the mathematical efficiency of RL with the behavioral realism of hu-
man decision-making. This work contributes to the foundation of trustworthy
and human-aligned artificial intelligence, providing theoretical and algorithmic

insights for robust decision-making under uncertainty.

Keywords: Reinforcement Learning, Distributional Reinforcement Learning,
Reinforcement Learning from Human Feedback, Regret Minimization

Student Number: 2020-24770
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Chapter 1

Introduction

1.1 The Shift from Perception to Action

Modern artificial intelligence has made extraordinary progress in perception—vision,
language, and speech—domains concerned with how machines see, interpret, and
generate information. Yet perception alone does not constitute intelligence. An
autonomous system must not only understand its environment but also decide
how to act within it, often under uncertainty and in alignment with human goals
and values. In this sense, reinforcement learning (RL) represents the natural
next step for Al: a shift from recognizing the world to interacting with it.

A familiar philosophical remark suggests that “Life is Choice between Birth
and Death”, underscoring that existence—biological or artificial—is shaped by a
continual sequence of decisions. Every agent must navigate uncertainty, evaluate
consequences, and refine its behavior over time to survive and succeed. This
perspective captures the essence of RL, which formalizes sequential decision-

making under uncertainty.



The breakthroughs of the Alpha family of agents illustrate the remarkable
potential of RL, deomonstrating how RL methodologies have scaled as game
complexity progressively increased. Starting with AlphaGo’s mastery of the
sequential, high-search-depth game of Go [90], the methodology evolved into
AlphaZero, which generalized zero-knowledge learning across perfect-information
games like Chess and Shogi [91]. The culmination of this progress came with
AlphaStar’s success in the real-time, imperfect-information, and decentralized
strategy game, StarCraft II [98]. This accomplishment not only demonstrated
RL’s capability to discover strategies that exceed human intuition in increasingly
challenging environments but also provided crucial insights into the complexities
of real-time, sequential decision-making under uncertainty. Notably, these suc-
cesses were achieved in settings where objectives were clearly defined and explicit
reward signals were directly available from the environment. Such conditions
stand in sharp contrast to many real-world human-facing tasks, where objectives

are ambiguous and rewards are not directly observable.

Under such reward-based formulations, RL can be interpreted as a computa-
tional analogue of human decision-making. This abstraction, however, relies not
only on the availability of well-defined scalar rewards, but also on expectation-
based value representations that collapse uncertainty into a single summary
statistic. As a consequence, classical RL frameworks struggle to represent the
uncertainty, variability, and asymmetry that are intrinsic to human evaluation
and decision-making. In many real-world human-facing settings, where objectives
are ambiguous and feedback is qualitative, both the specification of rewards
and the modeling of uncertainty become fundamentally challenging. Bridging
this gap requires principled frameworks that go beyond reward maximization,
incorporating both uncertainty-aware evaluation and alternative feedback signals

aligned with human judgment.
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Figure 1.1: Four stages of human decision making

1.2 The Cognitive Gap: Uncertainty and Regret in

Human Decision-Making

To understand the limitations of classical reinforcement learning in human-
facing settings, it is essential to examine how humans actually make decisions.
Human decision-making can be decomposed into four essential stages, forming

a continuous cognitive loop:

1. Information/State Perception: This initial stage involves the agent
(human or AI) collecting and interpreting external stimuli to form an
internal representation of the current environment state. In RL terms,
this is the observation phase, essential for subsequent prediction. The
rapid advancement of generative Al (e.g., using models trained on vast
datasets of images, audio, and text) has dramatically improved the quality
of this stage. This foundational capability—accurate and rich internal
modeling of the environment—is the prerequisite upon which all subsequent

decision-making is built.

2. Outcome Prediction and Value/Preference Evaluation: Based on



the perceived state, the agent predicts the potential outcomes of avail-
able actions. Crucially, this stage includes evaluation, where subjective
values, risk sensitivities, and personal preferences are applied to assign
worth to those predicted outcomes. A central characteristic of this stage is
the inherent uncertainty in prediction, which requires reasoning over the
distribution of possible outcomes rather than simple averages. Evidence
from neuroscience and cognitive psychology suggests that biological agents
employ distributional representations of reward uncertainty, while behav-
ioral economics has shown that risk-sensitive and non-expected utility

behaviors cannot be captured by mean-based evaluation alone.

. Policy Formulation and Action Selection: This stage concerns real-
time execution, where evaluated predictions guide action selection. In
classical reinforcement learning, this process is formalized through policies
that maximize expected return given the current state. As a result, decision-
making is largely driven by expectation-based optimization, abstracting

away uncertainty beyond the mean.

. Interaction and Feedback Circulation: The selected action is executed
in the environment, leading to a new state and yielding an outcome
(reward/cost) and feedback. This feedback then circulates back, refining
the initial perception and future evaluation models. This stage generates
two types of crucial feedback: explicit outcomes (next state, reward signal)
from the environment and internal feedback (prediction error, human
preference). In real-world human-facing systems, the lack of a clear, scalar
reward signal necessitates moving beyond traditional extrinsic rewards to
learning directly from qualitative human feedback (preferences, rankings).

Crucially, unlike real-time action selection, the interpretation of preference



feedback is inherently retrospective, involving comparisons between realized
outcomes and counterfactual alternatives. This retrospective comparison

naturally aligns with the notion of regret.

Taken together, this cognitive loop reveals a fundamental mismatch with
classical reinforcement learning. While RL has been highly successful in modeling
prediction and action selection, it largely abstracts away two core aspects of
human cognition: (i) uncertainty in evaluation, where values are subjective and
distributional rather than scalar, and (ii) the retrospective, regret-driven nature

of human feedback processing.

The philosophical drive of this dissertation is rooted in this gap between cog-
nitive reality and mathematical idealization. Specifically, while human decision-
making is shaped by uncertainty in evaluation and retrospective, regret-driven
feedback, classical reinforcement learning—grounded in the Markov Decision
Process (MDP) framework— abstracts decision-making through two strong
assumptions: (i) the availability of a perfectly defined scalar reward, and (ii)
the sufficiency of expectation-based dynamic programming for optimization. In
many real-world human-facing settings, however, neither assumption reliably
holds. Environments are inherently stochastic, and critical feedback is often
qualitative, subjective, or inconsistent, rather than immediate and scalar. As
a result, agents trained via standard expected RL may exhibit behaviors that
are brittle, risk-indifferent, or misaligned with human values, which are deeply
sensitive to variability and worst-case scenarios. Addressing this gap requires
rethinking both how uncertainty is represented in value estimation and how
feedback signals are modeled beyond scalar rewards. In particular, when feedback
originates from human judgments rather than the environment, learning must

account for uncertainty in evaluation and the regret-driven nature of feedback.



1.3 Research Scope and Unified Hypothesis on Uncer-
tainty

This dissertation is motivated by precisely this challenge, which lies at the
intersection of statistical modeling and behavioral alignment:

How can we design reinforcement learning systems that make decisions
under uncertainty in ways that are theoretically sound, practically robust, and
cognitively aligned with human judgment?

The complexity of this challenge arises from two fundamental limitations
inherent in the classical expected utility paradigm of RL: its inability to rigorously
model objective environmental stochasticity and its failure to capture nuanced
subjective human values. These shortcomings mean that conventional mean-
reward maximization is inadequate for real-world, high-stakes applications.
Consequently, these dual limitations—the reliance on expected utility and the
failure to capture human-like feedback—directly motivate the two distinct, yet

interconnected, research trajectories explored in this dissertation:

e Objective Uncertainty (Environmental Stochasticity): The failure
of expectation-based optimization to capture risk necessitates modeling
the full distribution of returns (Distributional RL; DistRL) to rigorously

account for environmental uncertainty and risk.

e Subjective Uncertainty (Value Ambiguity and Heterogeneity):
This trajectory focuses on creating algorithms that interpret and align with
subjective human feedback (Reinforcement Learning from Human Feed-
back; RLHF), specifically accounting for the uncertainty and heterogeneity

inherent in human preferences.

While these two trajectories are conceptually distinct, they are not indepen-



dent lines of inquiry in this dissertation, but rather reflect a coherent progression
of a single research agenda centered on uncertainty-aware decision making.
My earlier work in DistRL focused on learning and exploiting environmental
uncertainty to enable efficient exploration and risk-aware control in stochastic
environments. By moving beyond expectation-based objectives and modeling
full return distributions, this line of research addresses a foundational question:
how should an agent act when outcomes are inherently stochastic, rare events
are consequential, and uncertainty itself must inform decision making rather
than be averaged away.

This perspective emphasizes that uncertainty is not merely a nuisance to be
mitigated, but a structural property of the environment that must be explicitly
represented and reasoned about. DistRL thus provides a principled framework
for capturing variability, risk, and tail behavior of returns, enabling more robust
policies in safety-critical or high-stakes domains.

At the same time, focusing on outcome distributions naturally raises a deeper
question:

How are decisions evaluated when uncertainty is not only a property of the
environment, but also a defining feature of human judgment?

In many settings, human evaluations are inherently sensitive to variability,
risk, and counterfactual comparisons rather than point estimates of performance.
That is, judgments depend not only on what happened, but on how a realized
trajectory compares to plausible alternatives under uncertainty. This observation
motivates a transition from modeling uncertainty over outcomes to modeling
uncertainty over evaluation. While the former concerns the stochasticity of
the environment, the latter concerns ambiguity and heterogeneity in human
values. Importantly, these two forms of uncertainty are not orthogonal. Human

judgments are often shaped by sensitivity to risk, missed opportunities, and



unfavorable comparisons, all of which depend on the underlying uncertainty of

outcomes.

Here, regret provides a principled bridge between these two perspectives. In
DistRL, distributional uncertainty quantifies the range and variability of possi-
ble outcomes, guiding exploration and risk-sensitive behavior. In RLHF, regret
formalizes how humans implicitly assess actions by comparing realized behavior
against unchosen alternatives under uncertainty. Crucially, the formulation of
regret inherently incorporates both objective and subjective uncertainty: it
integrates distributional uncertainty—the range of plausible counterfactual out-
comes— with subjective evaluation—the human assessment of realized outcomes

against the best unchosen alternative.

The central hypothesis of this dissertation is that uncertainty-aware decision
making, grounded in distributional modeling and regret-based evaluation, provides
a principled foundation for both statistically robust learning and cognitively

aligned behavior.

1.4 Core Research Areas and Contributions

1.4.1 Distributional Reinforcement Learning: Uncertainty, Effi-

ciency, and Bias

DistRL is the mathematical extension of classical RL, recognizing that the full
distribution of returns contains information about risk and variability that is
essential in high-stakes domains (finance, healthcare, robotics). Capturing this
distributional asymmetry—a key component of human judgment formalized by
prospect theory and regret theory—is paramount. While empirically successful,

DistRL faces two central challenges addressed in this thesis:



Mitigating the Pitfall of Optimism in Exploration. DistRL exploration
often employs optimism in the face of uncertainty (OFU), guiding action based
on high variance estimates. However, this strategy suffers from a pitfall of
optimism: it fundamentally conflates epistemic uncertainty (which should guide
exploration) with aleatoric uncertainty (intrinsic environmental randomness).
This leads to a persistent, systematic risk-seeking bias and sub-optimal data
collection. We solve this bias by introducing Perturbed Quantile Regression (PQR),
which replaces variance-based optimism with randomized perturbations applied
to distortion risk measures. PQR ensures unbiased exploration while maintaining
risk-neutral optimality, supported by theoretical convergence guarantees and

state-of-the-art empirical performance across complex benchmarks like Atari.

Achieving Provable Statistical Efficiency with General Approxima-
tion DistRL algorithms must approximate the infinite-dimensional return
distribution using finite statistical functionals (e.g., quantiles, moments). This
introduces two fundamental issues: first, the functional must satisfy Bellman
Closedness (it must be preserved under the Bellman update); second, it must
ensure unbiased estimability from the finite samples collected online. Previous
work focused only on the former, leaving algorithms vulnerable to accumulated
approximation errors and failing to guarantee efficiency. We formally introduce
Bellman Unbiasedness and prove that only moment functionals satisfy both
this new property and Bellman Closedness. Based on this robust foundation,
we propose the Statistical Functional Least-Squares Value Iteration (SF-LSVI)
algorithm. SF-LSVI is the first distributional RL algorithm with provable ef-
ficiency under general value function approximation, achieving a tight regret

bound of O(dgH**VK).



1.4.2 Reinforcement Learning from Human Feedback: Robust

Alignment via Regret

RLHF addresses the inability of classical RL to handle subjective and qualitative
human values, relying on pairwise preference comparisons to align agent behavior.
The emergence of Direct Preference Optimization (DPO) has been transfor-
mative, simplifying the alignment process by directly updating policies from
preferences without an explicit reward model. However, DPO’s success, primarily
demonstrated in LLM fine-tuning, rests on an assumption challenged by general
RL environments: that preference data originates from policies near-optimal for

the task.

Addressing Likelihood Mismatch in Stochastic Environments In stan-
dard and offline RL settings, preference data is generated by diverse, suboptimal
policies under environmental stochasticity. Applying DPQO’s assumptions in this
context creates a severe likelihood mismatch: the suboptimality of the behavior
policy is incorrectly modeled as noise or inherent difficulty. This undermines
stability and generalization, especially when data is heterogeneous. We pro-
pose Policy-labeled Preference Learning (PPL) to fundamentally resolve this
mismatch. PPL reformulates human preference not through reward functions,
but through the lens of regret, incorporating the behavior policy label directly
into the learning objective. We show that regret, unlike reward, defines a unique,
policy-aware equivalence class that is inherently robust to heterogeneity. This
novel approach is further stabilized by a contrastive KL regularization. PPL
provides a principled framework for robust RLHF, significantly improving offline
alignment and extending its applicability beyond deterministic LLM settings to

general sequential decision-making.
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1.5 Organization of the Dissertation

Sequential Decision Making under Uncertainty

from Human Feedback

-

N

PPL

RLHF DistRL

Research
Goal

Regret Minimization

~

PQR

SF-LSVI

/

Figure 1.2: Conceptual structure of this dissertation.

This dissertation is organized as follows: Chapter 2 provides the necessary
background on Markov Decision Processes, classical reinforcement learning, and
the two central research areas of this dissertation: distributional reinforcement
learning and reinforcement learning from human feedback. Chapter 3 revisits
the exploration problem in DistRL and introduces the Perturbed Quantile
Regression (PQR) algorithm, which addresses biased exploration by disentangling
epistemic and aleatoric uncertainties. Chapter 4 develops the concept of Bellman
Unbiasedness and presents Statistical Functional Least-Squares Value Iteration
(SF-LSVI), the first provably efficient distributional algorithm under general
value function approximation. Chapter 5 focuses on RLHF and introduces Policy-
labeled Preference Learning (PPL), a regret-based framework that resolves the

likelihood mismatch in preference optimization and achieves robust alignment
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with human feedback. Finally, Chapter 6 concludes the dissertation, summarizing
the key findings and outlining directions for future research. Supplementary

results and additional implementation details are provided in the appendices.

1.6 Publications

The following publications have been selected as they closely align with the

central themes of this dissertation. * indicates equal contribution.

e Taehyun Cho, Seungyub Han, Heesoo Lee, Kyungjae Lee, Jungwoo Lee.
“Pitfall of Optimism: Distributional Reinforcement Learning by Randomiz-
ing Risk Criterion.” Advances in Neural Information Processing Systems

(NeurIPS), 2023.

e Taechyun Cho, Seungyub Han, Seokhun Ju, Dohyeong Kim, Kyungjae
Lee, Jungwoo Lee. “Bellman Unbiasedness: Toward Provably Efficient Dis-
tributional Reinforcement Learning with General Value Function Approxi-
mation.” Proceedings of the 42nd International Conference on Machine

Learning (ICML), 2025.

e Taehyun Cho*, Seokhun Ju*, Seungyub Han, Dohyeong Kim, Kyungjae
Lee, Jungwoo Lee. “Policy-labeled Preference Learning: Is Preference
Enough for RLHF?” Proceedings of the 42nd International Conference on
Machine Learning (ICML), 2025.
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Chapter 2

Background

This chapter presents the theoretical and algorithmic foundations that underpin
the main contributions of this dissertation. We begin by formulating the rein-
forcement learning (RL) problem through Markov decision processes (MDPs),
outlining the standard framework for sequential decision-making. While clas-
sical RL provides a principled foundation for optimizing expected returns, it
assumes that rewards are well-specified and that uncertainty can be adequately
represented by expectations—assumptions that often fail in real-world settings.
To address these limitations, we review two major extensions: distributional
reinforcement learning (DistRL), which models the full distribution of returns to
capture risk and uncertainty, and reinforcement learning from human feedback
(RLHF), which replaces explicit reward signals with qualitative human judg-
ments. Finally, we introduce the concept of regret minimization, a theoretical
framework that unifies these perspectives by connecting statistical efficiency
with behavioral alignment. Together, these topics provide the conceptual and

mathematical background for the algorithms developed in Chapters 3-5.

13



2.1 Reinforcement Learning and Markov Decision Pro-

cesses

Sequential decision-making is one of the central problems in artificial intelligence.
The mathematical framework most widely used to formalize this problem is
the notion of Markov decision processes (MDPs). In this section, we introduce
the preliminaries of reinforcement learning, including the definition of MDPs,
value functions, and the Bellman equations. We also highlight the limitations of
expectation-based RL, which motivate the development of distributional and

preference-based frameworks.

2.1.1 Markov Decision Processes

An episodic Markov decision process is defined by the tuple
M= (S, A HTP,r),

where S is a (possibly infinite) state space, A is the action space, H is the horizon,
P = {P,}L | are transition kernels, and r = {r,}}__, are reward functions. At
each step h € [H], the agent observes a state s, € S, chooses an action ay, € A,
receives reward 7 (sp, ap,), and transitions to a new state spy1 ~ Pp(-|sp,ap). A
(stochastic) policy 7 = {m, }fL| defines a distribution over actions given states:
mn(als) = Plap, = alsp, = s]. Unless otherwise noted, we consider discounted
returns with a discount factor v € [0,1).

The quality of a policy is measured by its value functions. The state value

sh:s],

Qr(s,a) = ru(s,0) + Egp, (1s,a) Vi1 (s)]-

function is
H

Z Tt(St, at)

t=h

Vir(s) = Eq

and the state—action value function is
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Figure 2.1: This modified N-Chain MDP illustrates how outcomes are governed
by full probability distributions rather than single scalar values. The agent at
S2 faces a choice between a low-variance, safe path (Left) and a high-variance,
risky path (Right). This structure highlights the representational limitations of

expectation-based RL

The Bellman operator 7™ defines a recursive mapping of value functions, and it
is a «y-contraction under the sup-norm. This property guarantees the existence
and uniqueness of ™ and underpins the convergence of classical RL algorithms

such as value iteration and Q-learning.

2.1.2 Limitations of Classical RL

Despite its elegance, classical RL collapses all uncertainty into expectations.
Two trajectories with identical expected returns but very different variances
are treated as equivalent. This is problematic in domains where risk sensitivity

matters, such as finance or healthcare, where variance and tail risks are critical.
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To illustrate this representational deficiency, consider the N-Chain environ-
ment shown in Figure 2.1. A classical RL agent determines its policy solely by
maximizing the expected return. In this example, the optimal decision based on
the mean value may lead the agent to choose the Left Path, as its expected return
is slightly higher than the average expectation of the Right Path. However, this
expectation-based view cannot differentiate between the tightly concentrated,
low-risk distribution of the Left Path and the bimodal distribution of the Right
Path, which contains both high risk (low outcome potential) and high reward
(certain high outcome potential). By summarizing the return only by its mean,

classical RL is mathematically blind to these distinct risk profiles.

Moreover, this expectation-based view also conflicts with emerging findings
in neuroscience. The canonical understanding posits that the firing of midbrain
dopamine neurons encodes a scalar Reward Prediction Error (RPE)—the differ-
ence between the received reward and the expected mean return. However, this
simple scalar model struggles to explain recent experimental evidence showing
that individual dopamine neurons exhibit heterogeneous responses that reflect
more than just the mean, effectively encoding a spectrum of optimism and
pessimism related to the distribution of potential returns [32]. This suggests that
biological value systems naturally represent risk and uncertainty by tracking

the full probability distribution, not just its expectation.

Finally, classical RL presumes access to explicit scalar rewards, which are
often unavailable in real-world settings such as dialogue, preference learning,
or human-robot interaction. These limitations—the necessity of modeling risk
or uncertainty for robustness and the need to align with human biological
value systems and feedback—motivate the development of the distributional

perspective and the study of RL from human feedback.
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2.2 Distributional Reinforcement Learning

2.2.1 Distributional Bellman Equation and Convergence Prop-

erties

The seminal work of Bellemare et al. [12] formalized the concept of return
distributions. Instead of learning the expected return, they proposed learning the
entire probability distribution of the random return Z™(s, a) for a given policy

7. The random return is the discounted sum of rewards from a state—action pair
(s,a):

o0
Z"(s,a) = Z Yo (st, ar),
=0

and its law is denoted by 1" (s, a). This framework acknowledges that the total
return is a random variable, not a deterministic value, whose variability is often
critical in real-world applications.

The core of this new perspective lies in the distributional Bellman equation,

which defines a recursive relationship for the return distribution itself:
Tn(s,a) £ r(s,a) +yn(s'd), s ~P([s,a), a ~w([s).

Here, 2 Jenotes equality in distribution. This equation represents a shift from a
functional mapping on scalars to an operator acting on distributions.

A crucial theoretical challenge was proving the convergence of this new
Bellman operator. Bellemare et al. [12] showed that the distributional Bellman
operator 7™ is not a contraction mapping under conventional norms like the sup-
norm or the total variation distance. However, they provided a novel convergence
guarantee by proving that for any p > 1, 7™ is a ~y-contraction under the

supremum p-Wasserstein distance:

Wo(T™n, T™n') < v Wp(n,1'),
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Figure 2.2: Visualization of the Distributional Bellman Operator 7. The figure
illustrates the three key transformation steps required to construct the target
distribution in distRL. (Left) Components of the Next-State Distribu-
tion: Shows the individual probability components that collectively define the
value distribution of the subsequent state. (Center) Scaling by the Discount
Factor: The full distribution is compounded and scaled by the discount factor ~.
This results in the discounted distribution (solid orange fill), relative to the origi-
nal distribution (dashed line). (Right) Shifting by the Immediate Reward:
The final step shifts the discounted distribution (dashed line) horizontally by

the immediate reward, yielding the final target distribution (solid orange fill).

where W, (n,7) = SUP(s.)esx.A Wp(1(s,a),1'(s,a)). This result demonstrated
that iterative application of the distributional Bellman operator converges to
the unique true return distribution 1™, establishing DistRL as a mathematically

sound generalization of classical RL.

2.2.2 Distributional Bellman Optimality and Instabilities

While the policy evaluation operator 77 enjoys the y-contraction property in
the supremum p-Wasserstein distance, the situation changes dramatically in the

control setting. The distributional Bellman optimality operator T is defined by
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applying a greedy policy with respect to the expected returns:
D
Tn(s,a) =r(s,a) +yn(s’,a®), o € argmaxEz,[Z(s',d)],

where Z(s',a") ~ n(s’,a’). This definition ensures that the means E[Z] evolve
exactly as in the classical Bellman optimality operator.

However, Bellemare et al. [12] established that the distributional Bellman
optimality operator 7 is fundamentally different from its policy-evaluation
counterpart. First, T is not a contraction in any metric, i.e., there exist value
distributions 7,7’ such that W,(Tn, T7') > v Wy(n,7').

Second, when multiple actions attain the same expected return, 7 may
choose different greedy actions depending on the selection rule, and in this case
no fixed point n* = 7n* need exist. Third, even when a fixed point exists, the
iterates ni41 := Tng are not guaranteed to converge; sequences can oscillate
or converge only weakly to the broader set of nonstationary optimal value
distributions.

By contrast, the expected values remain well behaved: for any 71,72,

|71 - ETml|| <+ |[Em] - Bl

which implies that E[nx] — Q* exponentially fast. This dichotomy highlights the
central instability of distributional control: although the mean values converge
reliably to the optimal Q)-function, the underlying distributions can behave patho-

logically, exhibiting non-expansion, absence of fixed points, or non-convergence.

2.2.3 Approximation schemes in distributional RL

Categorical approximation A first practical algorithm in this line is C51 [12],
which represents return distributions on a fixed grid of N atoms {z;}; equally

spaced between Vi, and Vipax. The agent learns probabilities {p;(s, a)}fil over
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these atoms, and the distributional Bellman update 7 ™7 is projected back onto
this support using a projection operator ®. Hence, the categorical update can

be written as
n(s,a) « Pe(r+vn(s,d)), o ~mn(]s),

with &, redistributing probability mass to the nearest atoms. Although this
projection introduces bias (the support cannot adapt to the true distribution),
Bellemare et al. [12] showed that the induced operator is non-expansive under
the squared Cramér distance, which suffices to guarantee stability. Empirically,
C51 achieved state-of-the-art results on the Atari 2600 benchmark without other
architectural modifications, suggesting that richer distributional targets can

dramatically improve learning efficiency and representation capacity.

Quantile approximation To address the rigidity of fixed supports, Dabney
et al. [31] proposed Quantile Regression Deep @Q)-Network (QR-DQN). Instead
of fixed atoms, QR-DQN parameterizes the return distribution 1" (s,a) by N
learnable quantile values {6;(s, a)}ﬁil, corresponding to quantile levels 7; = ﬁ

The training objective minimizes the quantile regression loss

1 N

L(0) = N ZEyNn [pn (y — 0i(s, a))], pr(u) = u(r — 1{u < 0}).

=1

This is equivalent to minimizing the 1-Wasserstein distance between predicted
and target distributions. In practice, QR-DQN employs the quantile Huber loss to
improve robustness. Given quantile targets y sampled from the Bellman update

and quantile predictions 6;(s, a), the quantile Huber loss for quantile level 7; is

i () = | — 1{u < 0} Lo(w),  u=y — bi(s,a),
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where L, (u) is the Huber loss defined by

U™, |u| S K,

Li(u) =

p(ul = 1k), Jul >k,

with x > 0 a threshold parameter (typically set to 1). The full objective is then

N

This combines the robustness of the Huber loss with the asymmetry of quantile
regression, yielding more stable optimization and reduced sensitivity to outliers.
QR-DQN significantly outperformed C51 on Atari benchmarks, and its theoret-
ical grounding rests on the contraction of the projected Bellman operator in
expectation.

Building on QR-DQN, Dabney et al. [30] introduced Implicit Quantile Net-
works (IQN), which approximate the entire quantile function F,- LoJ0,1] = R
using a neural network. Rather than relying on a fixed set of quantile levels,
IQN samples 7 ~ U[0, 1] and outputs 6-(s,a) as an estimate of Fn_l(T). This
implicit formulation provides a flexible and fine-grained representation of return
distributions, allowing the agent to capture distributional details beyond what
fixed quantile schemes can offer.

Extending this idea, Yang et al. [105] proposed Fully Parameterized Quantile
Functions (FQF), which jointly learn both the quantile fractions {7;} and the
corresponding quantile values {6;}. By adaptively allocating quantile fractions,
FQF focuses model capacity on critical parts of the return distribution, leading
to faster convergence and more accurate approximation. Empirically, both IQN
and FQF improved sample efficiency and achieved state-of-the-art performance

on Atari benchmarks, setting new records for distributional RL methods.
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Moment-based approximation More recently, Nguyen-Tang et al. [70]
proposed Moment Matching Distributional RL (MMDRL) and its deep variant
MMDQ@N. Unlike €51 and QR-DQN, which rely on predefined statistics (fixed
atoms or quantiles), MMDQN represents each return distribution 1™ (s, a) using a
set of learnable deterministic particles {Zp(s,a)?}Y ;. The update minimizes the
Maximum Mean Discrepancy (MMD) between the current particle set and the

Bellman target:

Lavp (0) = MMD? ({Zp(s, a) HLy {r +7Z- (s, a*) }Ly)

where a* = argmax, + Y, Zp(s',a’)" in the control setting. This formulation
can be interpreted as implicitly matching all moments between the return
distribution and its Bellman target. Theoretically, MMD provides sufficient
conditions for contraction in certain kernel families and guarantees convergence
at rate O(1/y/n) regardless of the dimension. Empirically, MMDQN achieved
superior performance on Atari-57, surpassing C51 and QR-DQN while sharing the
same network backbone, and achieving state-of-the-art mean human-normalized
scores among non-distributed agents. By discarding the restriction of predefined

statistics, MMDQN highlights a complementary perspective to quantile-based

methods, with natural extensions toward IQN- and FQF-style architectures.
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2.3 Reinforcement Learning from Human Feedback

2.3.1 Motivation and Origins

A central obstacle in reinforcement learning is the difficulty of designing reward
functions that are both correct and aligned with human intentions. Even small
misspecifications in a handcrafted reward can incentivize undesired behavior, a
phenomenon broadly known as reward hacking or reward exploitation. Inverse
reinforcement learning and imitation learning attempt to overcome this by
inferring reward functions from expert demonstrations. However, expert data
are often expensive to collect, and learned agents may be limited to imitating
the demonstrated policy rather than surpassing it.

In contrast, human feedback provides a more flexible and scalable source of
supervision. Instead of designing rewards directly, humans provide judgments
about behaviors produced by the agent. This signal is easier to elicit: while a non-
expert cannot always assign numerical scores, they can reliably indicate which
of two outputs better reflects their preference. Early works in preference-based
reinforcement learning (PbRL) demonstrated the feasibility of learning from such
feedback [3]. The seminal study of Christiano et al. [27] scaled this idea, showing
that collecting thousands of pairwise comparisons from non-expert annotators
sufficed to train agents on Atari games and continuous-control robotics. Their
work established RLHF as a practical methodology, and subsequent surveys [53]
have consolidated RLHF as a central paradigm for aligning powerful Al systems

with human values.

2.3.2 Canonical RLHF pipeline

The canonical RLHF framework can be described in three stages: (i) feedback

collection, (ii) reward modeling, and (iii) policy optimization.
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(i) Feedback collection Feedback can take various forms, including binary
comparisons, rankings, scalar ratings, or textual critiques. Among these, pairwise
trajectory or segment comparisons are the most common, as they balance
cognitive simplicity with statistical efficiency [94, 118]. For language models,
annotators often rank multiple responses for the same prompt, producing relative
judgments that are robust to annotation noise. Granularity is another design
choice: segment-level labels can improve sample efficiency by localizing signal,
while trajectory-level labels provide global quality assessments. Active feedback
strategies have also been explored, where the system selects queries that maximize

expected information gain [3, 58].

(ii) Reward modeling Given preference data, the next step is to fit a
parametric reward function R,. A widely used formulation is the Bradley—Terry

(BT) model [16]:

PICY = (T =0 (Ry(¢T) = Rp(CT)) s Ry(¢) =D Rylst,ar),

t

where o is the logistic sigmoid function. Training then reduces to maximum
likelihood estimation over all annotated comparisons. This procedure ensures that
R, assigns higher scores to trajectories judged as better by humans, effectively

transforming qualitative judgments into a quantitative reward landscape.

(iii) Policy optimization The final stage optimizes the agent’s policy against
Ry. To prevent divergence from the data distribution, the optimization is
regularized relative to a reference policy mef (e.g., a supervised fine-tuned

model). The canonical objective is

max B yxRy (2, y)] = BKYn(|2) | mrer(-]2),
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which has a closed-form solution 7*(y|z) o< et (y|2) exp(BRy (x,y)). In practice,
this is approximated by PPO with KL penalties [8, 75, 94]. This pipeline
enabled notable successes such as high-quality summarization models [94] and

the alignment of large language models like InstructGPT [75].

2.3.3 Direct preference optimization (DPO) and extensions

To avoid the fragility of reward modeling, recent work proposes to optimize
policies directly from preference data. Rafailov et al. [77] introduced Direct Pref-
erence Optimization (DPQO), which derives a surrogate objective by combining
the Bradley—Terry likelihood with the KL-regularized optimal policy form. For
a pair (¢T, (™), the log-odds of preference simplify to a difference in log-policy

ratios:
P[¢t = ¢7] ( (¢ m(¢7) )
e o T B (e T B ()
This yields the DPO loss

(¢t (¢
Lppo(m) = —E(¢+ ¢-)logo (ﬁ(log 7Tre(fECJ)r) — log Wre(ffg))))

The loss resembles logistic regression on policy ratios, making optimization
stable and bypassing the need for R;. Empirically, DPO has proven more
sample-efficient and less prone to reward miscalibration, and it is now widely

used in LLM fine-tuning.

Variants and generalizations Following DPO, numerous extensions have
been proposed. SLiC-HF [113] introduces sequence-likelihood calibration for
greater robustness. Implicit Preference Optimization (IP0) [18] frames feedback
as implicit gradient signals, while ORPO [46] modifies the functional form of
the loss for stability and exploration. Weighted Preference Optimization (WPO)

[116] emphasizes off-policy robustness by reweighting comparisons. General
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frameworks such as WPQ [7] unify these objectives under a single family. Active
preference learning methods select informative queries to reduce annotation
costs [10, 68]. Collectively, these advancements underscore a critical shift in
preference learning research from simple functional alignment toward developing
more robust, generalizable, and data-efficient algorithms that move beyond the

explicit loss form of DPO.

2.3.4 Challenges and open directions

Although RLHF has advanced rapidly, several challenges remain fundamental.

Annotator heterogeneity Human preferences vary across individuals due
to differences in knowledge, style, or bias. Modeling all annotators as sharing
a single latent reward leads to noisy signals. Recent approaches address this
by fitting mixture models, annotator-specific parameters, or hierarchical priors.
Another direction is to collect feedback at varying granularity (token-, step-, or

trajectory-level) to disambiguate local vs global preferences.

Off-policy data and likelihood mismatch Feedback datasets are often
gathered from multiple behavior policies. Naively treating all data as optimal
leads to likelihood mismatch, where suboptimality is conflated with stochasticity.
This issue destabilizes offline RLHF and motivates corrections such as importance
weighting, conservative sampling, or contrastive regularization. Policy-aware
formulations that explicitly account for data-generation policies, such as regret-

based models, provide a promising direction.

Data efficiency Collecting human preferences is costly. Active learning meth-
ods attempt to reduce annotation burden by querying comparisons that maximize

expected information gain or model uncertainty [58]. Pairwise feedback can also
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be supplemented with heuristics, synthetic labels, or preference propagation to
reduce labeling requirements. Nonetheless, striking the balance between label

cost and policy improvement remains an open challenge.

Theoretical guarantees While the Bradley—Terry likelihood enjoys asymp-
totic consistency, its finite-sample and robustness properties remain less un-
derstood. Recent theoretical analyses have begun to establish minimax rates
and generalization bounds for preference learning [86, 104], as well as regret
guarantees for preference-based policy optimization [22, 38]. Bridging the gap
between these theoretical developments and empirical advances in large-scale

RLHF remains an important research frontier.
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2.4 Regret Minimization Framework

The study of decision-making under uncertainty has evolved through several
theoretical frameworks, each attempting to explain how humans evaluate risk and
choice. We begin with Ezpected Utility Theory and Prospect Theory, and then
describe how Regret Theory extends these models by introducing counterfactual
comparison as a core component of human decision-making. Finally, we discuss
the formal notion of regret in reinforcement learning and the conceptual bridge

that unites these perspectives.

2.4.1 From Expected Utility to Prospect Theory

Expected Utility Theory. Von Neumann and Morgenstern [99] assumes
that a rational decision-maker assigns a scalar utility u(z) to each outcome x

and selects the action that maximizes expected utility:
A* = arg max Z p(w) u(z;(w)).
w

While this framework provides a rigorous normative foundation for rational
choice, it often fails to describe how humans actually make decisions. Empirical
studies show that people systematically violate its axioms—exhibiting intransi-
tive preferences, overweighting rare events, and shifting their choices depending
on how equivalent outcomes are framed. These deviations highlight that human
decision-making is not purely utility-maximizing but shaped by perception,
context, and emotion, motivating the development of alternative descriptive

theories such as prospect and regret theory.

Prospect Theory. Kahneman and Tversky [51] propose a psychologically
grounded alternative to Expected Utility Theory in which outcomes are evaluated

relative to a reference point r rather than in absolute terms. Let = denote an
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outcome and write v : R — R for the walue function applied to deviations
from the reference point, with the following general properties: (i) reference
dependence and normalization: v(0) = 0; (ii) monotonicity and continuity: v
is continuous and strictly increasing; (iii) diminishing sensitivity: v is concave
over gains (z > r) and convex over losses (z < r); (iv) loss aversion: the local
slope at the reference is steeper for losses than for gains, e.g., v/(07) > v/(0%).

Given a prospect A; that yields outcome z;(w) in state w with probability

p(w), evaluation is
A* = arg max Zp(w) v(zi(w) — 7).
w

In the cumulative version (CPT) [97], objective probabilities are replaced by
decision weights w : [0,1]—[0,1] (increasing, w(0) = 0, w(1) = 1) that typically

overweight small probabilities and underweight large ones:
A* = arg maxz w(p(w)) v(zi(w) — 7).

Although Prospect Theory successfully explains various behavioral phenom-
ena such as framing effects and risk-aversion in the loss domain, it still evaluates
each option independently. It does not explicitly capture the emotional compari-
son between chosen and unchosen outcomes. The next refinement, Regret Theory,

introduces this counterfactual component as a core element of decision-making.

2.4.2 Regret Theory: Anticipating Counterfactual Emotion

While Prospect Theory explains risk perception through reference-dependent
valuation, it does not capture how individuals evaluate their realized outcomes
relative to those that could have occurred. Regret Theory, first introduced

by Loomes and Sugden [60] and later formalized by Sugden [95], extends the
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analysis of risky choice by incorporating counterfactual comparison—a psycho-
logical mechanism through which people evaluate their choices against forgone
alternatives.

The central idea is that decision-makers anticipate the emotional conse-
quences of their choices, particularly the feeling of regret when an unchosen
alternative would have led to a better outcome. Let z, and x;, denote out-
comes from two possible actions a and b, and u(-) be the utility function. The

experienced utility of choosing a over b is expressed as
U(xg;xp) = u(zy) — R(u(xb) — u(ﬂ:a)),

where R(:) is an increasing function representing the psychological cost of
regret (and rejoicing when the sign is reversed). Unlike Prospect Theory, which
defines value relative to an exogenous reference point, Regret Theory defines
the reference endogenously—it is determined by the outcome of the forgone
option. Thus, satisfaction depends jointly on what is obtained and what is
forgone, reflecting the inherently comparative and introspective nature of human
decision-making.

This counterfactual structure enables Regret Theory to account for several
empirically observed decision patterns in behavioral economics. First, the an-
ticipation of regret can lead individuals to reverse preferences once feedback
about alternatives becomes available, a phenomenon known as preference re-
versal [60, 61]. Second, experimental evidence shows a systematic asymmetry
between omissions and commissions: people often prefer inaction when action
carries a higher potential for self-blame or regret [39, 109]. Third, individuals
tend to avoid high-variance options that may evoke intense regret, leading to
patterns of regret aversion or cautious choice in repeated and feedback-driven

environments [14, 15]. Together, these findings highlight how anticipated emotion
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and self-evaluation influence real-world choice behavior.

In this sense, Regret Theory offers a perspective that complements Prospect
Theory. Whereas Prospect Theory describes how people perceive risk and value
through reference-dependent weighting, Regret Theory explains how they evalu-
ate their own choices through counterfactual reasoning and emotional feedback,
revealing the introspective dimension of human decision-making under uncer-

tainty.

2.4.3 Algorithmic Regret in Reinforcement Learning

In contrast to behavioral regret, reinforcement learning (RL) interprets regret
as a normative measure of learning efficiency. For a multi-armed bandit with
optimal arm a* and mean rewards u,, the cumulative regret after 7" rounds is

defined as

Mﬂ

Regret(T a* — Hay)s

t:l
quantifying the opportunity loss incurred by not always selecting the optimal arm.
In a Markov decision process with horizon H and K episodes, the cumulative
regret measures the discrepancy between the optimal value function V;* and the

value realized by the learned policy my:

K
Regret(K Z Vi(sh) — Ve (sh)].
k=1

A sublinear growth of this regret guarantees asymptotic optimality, establishing a

theoretical foundation for efficient exploration and continual policy improvement.

2.4.4 Bridging Behavioral and Algorithmic Perspectives

Although behavioral and algorithmic notions of regret originate from distinct

disciplines, their mathematical structures are remarkably aligned. Both quan-
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Table 2.1: Structural Correspondence between Behavioral and Algorithmic

Regret
Regret Theory Reinforcement Learning
Utility of chosen action u(x;) Return under current policy V7 (s;)

Utility of unchosen alternative u(x;) Return under optimal policy V*(s;)

Difference u(x;) — u(x;) Return gap V™ (s¢) — V*(s¢)

tify a counterfactual gap between realized and optimal outcomes, effectively

measuring the cost of deviation from the best possible decision.

In both settings, learning and adaptation proceed through the reduction of
this counterfactual difference: humans adjust their preferences to avoid future
regret, while RL agents refine their policies to minimize performance loss.
From this viewpoint, regret minimization emerges as a universal principle of
adaptive decision-making under uncertainty—linking emotional reasoning with

computational optimization.

2.4.5 Toward a Unified View

Seen from this unified perspective, regret serves as both a descriptive and norma-
tive construct. As a descriptive concept, it captures how humans psychologically
evaluate their choices—through emotional and counterfactual comparisons with
what might have been. As a normative concept, it defines how algorithms math-
ematically measure and minimize deviations from optimal behavior. In this way,
regret bridges human introspection with computational rationality, revealing a

shared structure between emotional learning and algorithmic optimization.
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2.5 Summary

This chapter formalized Markov decision processes (MDPs) and emphasized why
expectation-based objectives alone are inadequate for decision-making under
uncertainty. We reviewed distributional reinforcement learning as a framework for
modeling full return distributions and discussed RLHF as a practical approach to
aligning policies with human judgment. Finally, we positioned regret as a unifying
theoretical principle that connects behavioral realism with algorithmic efficiency.
Chapters 3-5 build directly upon these foundations: mitigating exploration bias
in distributional control, establishing unbiased functional updates with efficiency

guarantees, and integrating regret into preference-based learning.
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Chapter 3

Pitfall of Optimism: Distributional
Reinforcement Learning by
Randomizing Risk Criterion

Despite the richness of risk-sensitive information from return distribution, only
a few DistRL methods [29, 64, 71, 96, 115] have tried to employ its benefits for
exploration strategies which is essential in deep RL to find an optimal behavior
within a few trials. The main reason is that the exploration strategies so far
is based on parametric (epistemic) uncertainty which arise from insufficient or
inaccurate data. In particular, Optimism in the face of uncertainty (OFU) is one
of the fundamental exploration principles that employs parametric uncertainty
to promote exploring less understood behaviors and to construct confidence set.
In bandit or tabular MDP settings, OFU-based algorithms select an action with
the highest upper-confidence bound (UCB) of parametric uncertainty which can

be considered as the optimistic decision at the moment [20, 28].

However, in deep RL, it is hard to trivially estimate the parametric un-
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Low Risk High Risk Optimistic Decision

Figure 3.1: Tllustrative example of why a biased risk criterion (naive optimism)
can degrade performance. Suppose two actions have similar expected returns,
but different variances (intrinsic uncertainty). (Left) If an agent does not specify
the risk criterion at the moment, the probability of selecting each action should
be similar. (Right) As OFU principle encourages to decide uncertain behaviors,
the empirical variance from quantiles was used as an estimate of uncertainty
[54, 64, 66]. However, optimistic decision based on empirical variance inevitably

leads a risk-seeking behavior, which causes biased action selection.

certainty accurately due to the black-box nature of neural networks and high-
dimensionality of state-action space. Without further computational task, the
estimated variance from distribution is extracted as a mixture of two types of
uncertainty, making it difficult to decompose either component. For example,
DLTV [64] was proposed as a distribution-based OFU exploration that decays
bonus rate to suppress the effect of intrinsic uncertainty, which unintentionally
induces a risk-seeking policy. Although DLTV is the first attempt to introduce
OFU in distRL, we found that consistent optimism on the uncertainty of the
estimated distribution still leads to biased exploration. We will refer to this
side-effect as one-sided tendency on risk, where selecting an action based on
a fixed risk criterion degrades learning performance. In Section 3.3, we will
demonstrate the one-sided tendency on risk through a toy experiment and show

that our proposed randomized approach is effective to avoid this side effect.
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PQR replay buffer DLTV replay buffer
x (VA2 x X

Number of candidate actions

Figure 3.2: An illustrative example of proposed algorithm (PQR). Each distri-
bution represents the empirical PDF of return. PQR benefits from excluding
inferior actions and promoting unbiased selection with regards to high intrinsic

uncertainty through randomized risk criterion.

In this paper, we introduce Perturbed Distributional Bellman Optimality
Operator (PDBOO) to address the issue of biased exploration caused by a
one-sided tendency on risk in action selection. We define the distributional
perturbation on return distribution to re-evaluate the estimate of return by
distorting the learned distribution with perturbation weight. To facilitate deep
RL algortihm, we present Perturbed Quantile Regression(PQR) and test in Atari
55 games comparing with other distributional RL algorithms that have been
verified for reproducibility by official platforms [19, 76].

In summary, our contributions are as follows.

e A randomized approach called perturbed quantile regression(PQR) is pro-
posed without sacrificing the original (risk-neutral) optimality and im-

proves over naive optimistic strategies.

e A sufficient condition for convergence of the proposed Bellman operator is

provided without satisfying the conventional contraction property.
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3.1 Backgrounds & Related works
3.1.1 Distributional RL

We consider a Markov decision process (MDP) which is defined as a tuple
(S, A, P,R,v) where S is a finite state space, A is a finite action space, P :
SxAxS — [0, 1] is the transition probability, R is the random variable of rewards
in [—Rmax, Rmax), and v € [0,1) is the discount factor. We define a stochastic
policy 7(+|s) which is a conditional distribution over A given state s. For a fixed
policy m, we denote Z” (s, a) as a random variable of return distribution of state-
action pair (s, a) following the policy . We attain Z7(s,a) = Y vy v R(St, At),
where Spy1 ~ P(:|St, Ar), Ar ~ 7(:|St) and Sy = s, Ag = a. Then, we define an
action-value function as Q™(s,a) = E[Z™(s,a)] in [—Viax, Vinax] Where Vijax =
Rpax/(1 — 7). For regularity, we further notice that the space of action-value

distributions Z has the first moment bounded by Viax:
Z={Z:8xA— PR)| E[|Z(s,a)|] < Vinax,V(s,a)} .

In distributional RL, the return distribution for the fixed 7 can be computed

via dynamic programming with the distributional Bellman operator defined as,
T"Z(s,a) 2 R(s,a) +7Z(S', A'), S~ P(|s,a), A'~n(|s)

where £ denotes that both random variables share the same probability distribu-
tion. We can compute the optimal return distribution by using the distributional
Bellman optimality operator defined as,

TZ(s,a) 2 R(s,a) +v2(S',a*), S ~ P(-|s,a), a* = argmax Ez[Z(5',d)).

a

Bellemare et al. [12] have shown that 7™ is a contraction in a maximal form of

the Wasserstein metric but 7 is not a contraction in any metric. Combining
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with the expectation operator, [E o T is a contraction so that we can guarantee
that the expectation of Z converges to the optimal state-action value. Another
notable difference is that the convergence of a return distribution is not generally
guaranteed to be unique, unless there is a total ordering < on the set of greedy

policies.

3.1.2 Exploration on Distributional RL

To combine with deep RL, a parametric distribution Zy is used to learn a
return distribution. Dabney et al. [31] have employed a quantile regression to
approximate the full distribution by letting Zy(s,a) = % Zf\il 09, (s,a) Where
0 represents the locations of a mixture of N Dirac delta functions. Each 6;
represents the value where the cumulative probability is 7; = ﬁ By using the
quantile representation with the distributional Bellman optimality operator, the

problem can be formulated as a minimization problem as,

0 = arg n(lai/n D (Zy (styar), T Zg-(st,at))

. f: P2 (re + 705 (st41.a") — 0i(st, ar))
— arg min
& o' N

ij=1
where (s¢, ag, 4, S¢4+1) 18 a given transition pair, o’ := argmax, Ez[Zp(si41,a)],
T = ”%Jm, PE(x) = |Ti = dzcoy|Lr(z), and Ly(z) := x2/2 for |z| < k and
L, (z) := k(|z| — k), otherwise.

Based on the quantile regression, Dabney et al. [31] have proposed a quantile
regression deep QQ network (QR-DQN) that shows better empirical performance
than the categorical approach [12], since the quantile regression does not restrict
the bounds for return.

As deep RL typically did, QR-DQN adjusts e-greedy schedule, which selects

the greedy action with probability 1 — ¢ and otherwise selects random available
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actions uniformly. The majority of QR-DQN variants [30, 105] rely on the same
exploration method. However, such approaches do not put aside inferior actions
from the selection list and thus suffers from a loss [74]. Hence, designing a schedule
to select a statistically plausible action is crucial for efficient exploration.

In recent studies, Mavrin et al. [64] modifies the criterion of action selection
for efficient exploration based on optimism in the face of uncertainty. Using
left truncated variance as a bonus term and decaying ratio ¢; to suppress the
intrinsic uncertainty, DLTV was proposed as an uncertainty-based exploration in
DistRL without using e-greedy schedule. The criterion of DLTV is described as:

a* = argmax (EP[Z(S/, a)] + e ai(s’,a’)) ,

a/

logt 1 Y
Ct = C 7g’ Ui_WZ(GN_ei)2’

[\)

where 6;’s are the values of quantile level ;.

3.1.3 Risk in Distributional RL

Instead of an expected value, risk-sensitive RL is to maximize a pre-defined risk
measure such as Mean-Variance [112], Value-at-Risk (VaR) [26], or Conditional
Value-at-Risk (CVaR) [78, 79] and results in different classes of optimal policy.
Especially, Dabney et al. [30] interprets risk measures as the expected utility
function of the return, i.e., Ez[U(Z(s,a))]. If the utility function U is linear, the
policy obtained under such risk measure is called risk-neutral. If U is concave or
convex, the resulting policy is termed as risk-averse or risk-seeking, respectively.
In general, a distortion risk measure is a generalized expression of risk measure

which is generated from the distortion function.

Definition 3.1.1. Let h : [0,1] — [0, 1] be a distortion function such that

h(0) = 0,h(1) = 1 and non-decreasing. Given a probability space (€2, F,P) and
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a random variable Z : ) — R, a distortion risk measure p; corresponding to

a distortion function A is defined by:

[e.o]

pn(Z2) =EMP)[7] = / za%(h o Fy)(2)dz,

—o0
where Fz is the cumulative distribution function of Z.

In fact, non-decreasing property of h makes it possible to distort the dis-
tribution of Z while satisfying the fundamental property of CDF. Note that
the concavity or the convexity of distortion function also implies risk-averse
or seeking behavior, respectively. Dhaene et al. [34] showed that any distorted
expectation can be expressed as weighted averages of quantiles. In other words,
generating a distortion risk measure is equivalent to choosing a reweighting
distribution.

Fortunately, DistRL has a suitable configuration for risk-sensitive decision
making by using distortion risk measure. Chow et al. [25] and Stanko and Macek
[93] considered risk-sensitive RL with a CVaR objective for robust decision
making. Dabney et al. [30] expanded the class of policies on arbitrary distortion
risk measures and investigated the effects of a distinct distortion risk measures
by changing the sampling distribution for quantile targets 7. Zhang and Yao
[111] have suggested QUOTA which derives different policies corresponding to
different risk levels and considers them as options. Moskovitz et al. [67] have
proposed TOP-TD3, an ensemble technique of distributional critics that balances

between optimism and pessimism for continuous control.

3.2 Perturbation in Distributional RL

3.2.1 Perturbed Distributional Bellman Optimality Operator

To choose statistically plausible actions which may be maximal for certain risk

criterion, we will generate a distortion risk measure involved in a pre-defined
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constraint set, called an ambiguity set. The ambiguity set, originated from
distributionally robust optimization (DRO) literature, is a family of distribution
characterized by a certain statistical distance such as ¢-divergence or Wasserstein
distance [36, 88]. In this paper, we will examine the ambiguity set defined by
the discrepancy between distortion risk measure and expectation. We say the
sampled reweighting distribution & as (distributional) perturbation and define it

as follows:

Definition 3.2.1. (Perturbation Gap, Ambiguity Set) Given a probability space
(Q, F,P), Define a random variable X : Q — R and a set of probability density
functions 2 = {£: 0 < &(w) < oo, wea S(w)P(dw) = 1}. For a given constraint
set U C =, we say £ € U as a (distributional) perturbation from U and
denote the £ —weighted expectation of X as follows:
Ee(X] = [ X(w)&(w)P(dw),
wel?

which can be interpreted as the expectation of X under some probability measure
Q, where £ = dQ/dP is the Radon-Nikodym derivative of Q with respect to P.
We further define d(X;¢) = |[E[X] — E¢[X]| as perturbation gap of X with
respect to £. Then, for a given constant A > 0, the ambiguity set with the
bound A is defined as

Un(X) = {¢ € Z: [E[X] - Ee[X]| < A}.

For brevity, we omit the input w from a random variable unless confusing.
Since £ is a probability density function, E¢[X] is an induced risk measure with
respect to a reference measure P. Intuitively, {(w) can be viewed as a distortion
to generate a different probability measure and vary the risk tendency. The
aspect of using distortion risk measures looks similar to IQN [30]. However,

instead of changing the sampling distribution of quantile level 7 implicitly, we
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reweight each quantile from the ambiguity set. This allows us to control the
maximum allowable distortion with bound A, whereas the risk measure in IQN
does not change throughout learning. In Section 3.2.3, we suggest a practical
method to construct the ambiguity set.

Now, we characterize perturbed distributional Bellman optimality operator

(PDBOO) T¢ for a fixed perturbation { € Ua(Z) written as below:
TeZ(s,0) £ R(s,0) +2(',a*(€)),
S~ P(s,a), a*(€) = argmax E¢ p[Z(s',a")].

Notice that £ = 1 corresponds to a base expectation, i.e., K¢ p = Ep, which
recovers the standard distributional Bellman optimality operator 7 . Specifically,
PDBOO perturbs the estimated distribution only to select the optimal behavior,
while the target is updated with the original (unperturbed) return distribution.

If we consider the time-varying bound of ambiguity set, scheduling A; is a
key ingredient to determine whether PDBOO will efficiently explore or converge.
Intuitively, if an agent continues to sample the distortion risk measure from a
fixed ambiguity set with a constant A, there is a possibility of selecting sub-
optimal actions after sufficient exploration, which may not guarantee eventual
convergence. Hence, scheduling a constraint of ambiguity set properly at each
action selection is crucial to guarantee convergence.

Based on the quantile model Zy, our work can be summarized into two parts.
First, we aim to minimize the expected discrepancy between Zy and T ¢Z,-
where ¢ is sampled from ambiguity set Ua. To clarify notation, we write E¢[:]
as a {—weighted expectation and E¢. ()] as an expectation with respect
to & which is sampled from Ua. Then, our goal is to minimize the perturbed

distributional Bellman objective with sampling procedure &2:

Héi,n ]E&N(@(UAt) [D<Z9/ (87 CL), T{t ZG* (87 CL))] (31)
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where we use the Huber quantile loss as a discrepancy on Zy and T ¢Zy- at
timestep t. In typical risk-sensitive RL or distributionally robust RL, the Bellman
optimality equation is reformulated for a pre-defined risk measure [25, 92, 106].
In contrast, PDBOO has a significant distinction in that it performs dynamic
programming that adheres to the risk-neutral optimal policy while randomizing
the risk criterion at every step. By using min-expectation instead of min-max
operator, we suggest unbiased exploration that can avoid leading to overly
pessimistic policies. Furthermore, considering a sequence & which converges to
1 in probability, we derive a sufficient condition of A; that the expectation of
any composition of the operators EoT¢, , =EKoT¢ oT¢  0---0Tg¢ has the
same unique fixed point as the standard. These results are remarkable that we

can apply the diverse variations of distributional Bellman operators for learning.

3.2.2 Convergence of the perturbed distributional Bellman op-

timality operator

Unlike conventional convergence proofs, PDBOO is time-varying and not a
contraction, so it covers a wider class of Bellman operators than before. Since
the infinite composition of time-varying Bellman operators does not necessarily
converge or have the same unique fixed point, we provide the sufficient condition
in this section. We denote the iteration as Z(™+1) = T5n+lZ(”), 70 = Z for
each timestep n > 0 , and the intersection of ambiguity set as U, (Z1) =

ﬂs@L{An (Z("*l)(s,a)).
Assumption 3.2.2. Suppose that Y > ; A, < co and &, is uniformly bounded.

Theorem 3.2.3. (Weaker Contraction Property) Let &, be sampled from
an ambiguity set Z/_lAn(Z(”*l)) for every iteration. If Assumption 3.2.2 holds,

then the expectation of any composition of operators ET¢, , converges, i.e.,
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ET¢,.[Z] — E[Z*]. Moreover, the following bound holds,

sup HE[Z(”)(S, a)] — E[Z* (s, a)]

s,a

s,a

0o k
< Z (27k_1Vmax +2 Z V' (Apyo—i + Ak+1—i)> .

k=n i=1
Practically, satisfying Assumption 3.2.2 is not strict to characterize the
landscape of scheduling. Theorem 3.2.3 states that even without satisfying ~-
contraction property, we can show that E[Z*] is the fixed point for the operator
ET¢,.,. However, E[Z*] is not yet guaranteed to be “unique” fixed point for
any Z € Z. Nevertheless, we can show that E[Z*] is, in fact, the solution of the

standard Bellman optimality equation, which is already known to have a unique

solution.

Theorem 3.2.4. If Assumption 3.2.2 holds, E[Z*] is the unique fized point of

Bellman optimality equation for any Z € Z.

As aresult, PDBOO generally achieves the unique fixed point of the standard
Bellman operator. Unlike previous distribution-based or risk-sensitive approaches,
PDBOO has the theoretical compatibility to obtain a risk-neutral optimal policy
even if the risk measure is randomly sampled during training procedure. For

proof, see Appendix A.1.3.

3.2.3 Practical Algorithm with Distributional Perturbation

In this section, we propose a perturbed quantile regression (PQR) that is a
practical algorithm for distributional reinforcement learning. Our quantile model
is updated by minimizing the objective function (3.1) induced by PDBOO. Since
we employ a quantile model, sampling a reweight function £ can be reduced into

sampling an N-dimensional weight vector & := [£1,- -+ ,&n] where Zfil & =N
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Algorithm 1 Perturbed Quantile Regression (PQR)
Input: (s,a,r,s"), v € [0,1), timestep ¢ > 0, ¢ > 0, concentration

B
Initialize Ay > 0.
Ay Agt=(F9), // Assumption 3.2.2
¢ + max (1V + Ay(Nz — 1V),0) where & ~ Dir(3) // Sample
§~Un, (ZW)
£+ NE&/D & // Refine as a weighting function

a* < argmax, E¢[Z(s',a’)]  // Select greedy action with perturbed return
TO; < r+~0;(s',a*), Vj // Target update with unperturbed distribution
t—t+1

Output: SN E; [pE(T0; — 0i(s,a))]

and >0 for all i € {1,---, N}. Based on the QR-DQN setup, note that the
condition [, ., &(w)P(dw) = 1 turns into sz\il +& =1, since the quantile level
isset as 1; = ﬁ

A key issue is how to construct an ambiguity set with bound A; and then
sample &. A natural class of distribution for practical use is the symmetric
Dirichlet distribution with concentration 3, which represents distribution over
distributions. (i.e. * ~ Dir(3).) We sample a random vector, x ~ Dir(3),
and define the reweight distribution as & := 1¥ + a(Nz — 1V). From the
construction of &, we have 1 —a < & < 14 (/N —1) for all i and it follows that
|1 —&| < a(N —1). By controlling «, we can bound the deviation of & from 1
and bound the perturbation gap as

sup [E[Z(s, a)] — E¢[Z(s, a)]| = sup

s,a s,a

/ Z(w; s, a)(1 — &(w))P(dw)
weN

< sup|l —&(w)] sup E[|Z(s,a)|] < sup|l — &(w)|Vinax < @(N — 1) Vipax.
we S,a we)
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Figure 3.3: Pipeline of PDBOO.

Hence, letting a < m is sufficient to obtain d(Z;£) < A in the quantile
setting. We set 3 = 0.05 - 1V to generate a constructive perturbation &, which
gap is close to the bound A,,. For Assumption 3.2.2, our default schedule is set
as Ay = Aot~ (119 where € = 0.001.

Figure 3.3 shows the pipeline of our algorithm. With the schedule of perturba-
tion bound {A,,}, the ambiguity set Un,, (Z,—1) can be defined by previous Z,,_1.
For each step, (distributional) perturbation &, is sampled from Ua, (Z,—1) by
the symmetric Dirichlet distribution and then PDBOO T, can be performed.

3.3 Experiments on Stochastic Enviornments with High

Intrinsic Uncertainty

Our experiments aim to investigate the following questions.

1. Does randomizing risk criterion successfully escape from the biased explo-

ration in stochastic environments?
2. Can PQR accurately estimate a return distribution?

3. Can a perturbation-based exploration perform sucessfully as a behavior

policy for the full Atari benckmark?
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Figure 3.4: Illustration of the N-Chain environment [73] with high uncertainty
starting from state so. To emphasize the intrinsic uncertainty, the reward of
state s4 was set as a mixture model composed of two Gaussian distributions.

Blue arrows indicate the risk-neutral optimal policy in this MDPs.

Algorithm 2 Perturbed DLTV (p-DLTV)
Input: transition (s, a,r,s’), discount v € [0,1)
Qs a) = 5 32, 05(5', ')
et ~ ¢ N(0, lnTt) // Randomize the coefficient

a* + argmax, (Q(s',d’) + ct\ /o2 (s, a'))
TO; < r+~0(s,a"), Vj
Output: Zf\il E; [P%(Tej —0i(s,a))]

3.3.1 N-Chain Enviornment

For intuitive comparison between optimism and randomized criterion, we design
p-DLTV, a perturbed variant of DLTV, where coefficient ¢; is multiplied by a
normal distribution N(0, 12).

N-Chain with high intrinsic uncertainty. We extend N-Chain environment
[73] with stochastic reward to evaluate action selection methods. A schematic
diagram of the stochastic N-Chain environment is depicted in Figure 3.4. The

reward is only given in the leftmost and rightmost states and the game termi-
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nates when one of the reward states is reached. We set the leftmost reward as
N(10,0.1%) and the rightmost reward as 2N(5,0.1%) + £N/(13,0.1%) which has
a lower mean as 9 but higher variance. The agent always starts from the middle
state s9 and should move toward the leftmost state sg to achieve the greatest
expected return. For each state, the agent can take one of six available actions:
left, right, and 4 no-op actions. The optimal policy with respect to mean is
to move left twice from the start. We set the discount factor v = 0.9 and the
coefficient ¢ = 50.

Despite the simple configuration, the possibility to obtain higher reward
in suboptimal state than the optimal state makes it difficult for an agent to
determine which policy is optimal until it experiences enough to discern the
characteristics of each distribution. Thus, the goal of our toy experiment is to
evaluate how rapidly each algorithm could find a risk-neutral optimal policy.

The results of varying the size of variance are reported in Appendix 3.1.

Analysis of Experimental Results. As we design the mean of each return
is intended to be similar, examining the learning behavior of the empirical
return distribution for each algorithm can provide fruitful insights. Figure 3.5
shows the empirical PDF of return distribution by using Gaussian kernel density
estimation. In Figure 3.5(b), DLTV fails to estimate the true optimal return
distribution. While the return of (sa,right) (red line) is correctly estimated
toward the ground truth, (s2,1left) (blue line) does not capture the shape and
mean due to the lack of experience. At 20K timestep, the agent begins to see
other actions, but the monotonic scheduling already makes the decision like
exploitation. Hence, decaying schedule of optimism is not a way to solve the
underlying problem. Notably, p-DLTV made a much better estimate than DLTV

only by changing from optimism to a randomized scheme. In comparison, PQR
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Figure 3.6: Total count of performing true optimal action. The oracle (dashed

line) is to perform the optimal action from start to end.

estimates the ground truth much better than other baselines with much closer

mean and standard-deviation.

Figure 3.6 shows the number of timesteps when the optimal policy was
actually performed to see the interference of biased criterion. Since the optimal
policy consists of the same index ai, we plot the total count of performing
the optimal action with 10 seeds. From the slope of each line, it is observed
that DLTV selects the suboptimal action even if the optimal policy was initially
performed. In contrast, p-DLTV avoids getting stuck by randomizing criterion and
eventually finds the true optimal policy. The experimental results demonstrate
that randomizing the criterion is a simple but effective way for exploration on

training process.

Hyperparameter Sensitivity. In Figure 3.7, we compute the 2-Wasserstein
distance from the ground truth return distribution N (1072, (0.192)?). Except for
QR-DQN , each initial hyperparameter {c, Ao} was implemented with grid search
on [1,5,10, 50,100, 500, 1000, 5000] in 5 different seeds. As the hyperparameter
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Figure 3.7: 2-Wasserstein distance between the empirical return distribution and
the ground truth N(8.1,0.081%). We use QR-DQN with a fixed setting of e-greedy
as a reference baseline, because the hyperparameter of e-greedy is not related to

the scale of Q-values.

decreases, each agent is likely to behave as exploitation. One interesting aspect
is that, while it may be difficult for DLTV and p-DLTV to balance the scale
between the return and bonus term, PQR shows robust performance to the initial
hyperparameter. This is because the distorted return is bounded by the support
of return distribution, so that PQR implicitly tunes the scale of exploration. In

practice, we set Ag to be sufficiently large. See Table A.1 in Appendix A.2.1.

To explore the effect of intrinsic uncertainty, we run multiple experiments
with various reward settings for the rightmost state as keeping their mean at 9.
As the distance between two Gaussians was increased, the performance of DLTV
decrease gradually, while other algorithms show consistent results. The result
implies the interference of one-sided tendency on risk is proportional to the
magnitude of the intrinsic uncertainty and the randomized criterion is effective

in escaping from the issue.
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Table 3.1: Total counts of performing true optimal action with 4 different seeds.

Reward Setting | (8,10) | (7,11) | (6,12) | (5,13) | (4,14) | (3,15) | (2,16) | (1,17)
QR-DQN 12293 | 11381 | 11827 | 12108 | 10041 | 11419 | 9696 | 11619
DLTV 9997 | 9172 | 9646 | 9251 | 7941 | 6964 | 7896 | 7257
p-DLTV 14344 | 14497 | 13769 | 15507 | 14469 | 14034 | 14068 | 13404
PQR 14546 | 15018 | 14693 | 15142 | 15361 | 13859 | 14602 | 14354

LunarLander-v2
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Figure 3.8: (Left) Three main environmental factors causing high intrinsic

uncertainty on LunarLander-v2. (Right) Performance on LunarLander-v2

3.3.2 LunarLander-v2

To verify the effectiveness of the proposed algorithm in the complex environment
with high intrinsic uncertainty, we conduct the experiment on LunarLander-v2.
We have focused on three main factors that increase the intrinsic uncertainty

from the structural design of LunarLander environment:

e Random initial force: The lander starts at the top center with an

random initial force.

e Action stochasticity: The noise of engines causes different transitions

with same action.
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Table 3.2: Mean and median of best scores across 55 Atari games, measured as
percentages of human baseline. Reference values are from Quan and Ostrovski

[76] and Castro et al. [19].

50M Performance Mean | Median | > human | > DQN
DQN-zoo (no-ops) 314% 55% 18 0
DQN-dopamine (sticky) 401% 51% 15 0
QR-DQN-zo00 (no-ops) 559% 118% 29 47
QR-DQN-dopamine (sticky) 562% 93% 27 46
IQN-zoo (no-ops) 902% 131% 21 50
IQN-dopamine (sticky) 940% 124% 32 51
RAINBOW-zo0 (no-ops) 1160% 154% 37 52
RAINBOW-dopamine (sticky) | 965% 123% 35 53
PQR-zoo (no-ops) 1121% 124% 33 53
PQR-dopamine (sticky) 962% 123% 35 51

e Extreme reward system: If the lander crashes, it receives -100 points.

If the lander comes to rest, it receives +100 points.

Therefore, several returns with a fixed policy have a high variance. As
previously discussed about the fixedness from N-Chain environment, we can
demonstrate that randomized approaches, PQR and p-DLTV, outperform other

baselines in LunarLander-v2.

3.3.3 55 Atari Games

We compare our algorithm to various DistRL baselines, which have demonstrated

good performance on RL benchmarks. In Table 3.2, we evaluated 55 Atari results,
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averaging over 5 different seeds at 50M frames. We compared with the published
score of QR-DQN [31], IQN [30], and Rainbow [45] via the report of DQN-Zoo [76]
and Dopamine [19] benchmark for reliability. This comparison is noteworthy
since our proposed method only applys perturbation-based exploration strategy

and outperforms advanced variants of QR-DQN. 1

No-ops Protocol. First, we follow the evaluation protocol of [11, 65] on
full set of Atari games implemented in OpenAl’s Gym [17]. Even if it is well
known that the no-ops protocol does not provide enough stochasticity to avoid
memorization, intrinsic uncertainty still exists due to the random frame skipping
[62]. While PQR cannot enjoy the environmental stochasticity by the deterministic
dynamics of Atari games, PQR achieved 562% performance gain in the mean of
human-normalized score over QR-DQN, which is comparable results to Rainbow.
From the raw scores of 55 games, PQR wins 39 games against QR-DQN and 34

games against IQN.

Sticky actions protocol. To prevent the deterministic dynamics of Atari
games, Machado et al. [62] proposes injecting stochasticity scheme, called sticky
actions, by forcing to repeat the previous action with probability p = 0.25.
Sticky actions protocol prevents agents from relying on memorization and allows
robust evaluation. In Figure 3.9, PQR shows steeper learning curves, even without
any support of advanced schemes, such as n-step updates for Rainbow or IQN.
In particular, PQR dramatically improves over IQN and Rainbow in ASSAULT,
BATTLEZONE, BEAMRIDER, BERZERK and BOWLING. In Table 3.2, PQR shows
robust median score against the injected stochasticity.

It should be noted that IQN benefits from the generalized form of distri-

'In Dopamine framework, IQN was implemented with n—step updates with n = 3, which
improves performance.
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Figure 3.10: Evaluation curves on Atari games. All curves are smoothed over 10 consecutive steps with three random
seeds. In case of Pong-v4, we resize the x-axis, since it can easily obtain the optimal policy with few interactions
due to its environmental simplicity.
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butional outputs, which reduces the approximation error from the number of
quantiles output. Compare to IQN, PQR does not rely on prior distortion risk
measure such as CVaR [24], Wang [102] or CPW [97], but instead randomly
samples the risk measure and evaluates it with a risk-neutral criterion. Another
notable difference is that PQR shows the better or competitive performance solely
through its exploration strategies, compared to e-greedy baselines, such as
QR-DQN, IQN, and especially Rainbow. Note that Rainbow enjoys a combination
of several orthogonal improvements such as double Q-learning, prioritized replay,

dueling networks, and n-step updates.

We test our algorithm under 30 no-op settings to align with previous works.
We compare our baseline results with results from the DQN-Zoo framework [76],
which provides the full benchmark results on 55 Atari games at 50M and 200M
frames. We report the average of the best scores over 5 seeds for each baseline

algorithms up to 50M frames.

However, recent studies tried to follow the setting proposed by Machado et al.
[62] for reproducibility, where they recommended using sticky actions. Hence,
we provide all human normalized scores results across 55 Atari games for 50M
frames including previous report of Dopamine and DQN-Zoo framework to help
the follow-up researchers as a reference. We exclude Defender and Surround
which is not reported on Yang et al. [105] because of relialbility issues in the

Dopamine framework. In summary,

e DQN Zoo framework corresponds to 30 no-op settings (version v4).

e Dopamine framework corresponds to sticky actions protocol (version v0).
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Figure 3.11: Evaluation curves on Pong-v4 environments.

Ablation on PQR schedules

To investigate the effect of the schedule of A4, we run the experiment on Pong-v4

and set up several baselines as follows:

e 1/t9: A fixed size ambiguity set. A; = O(1)
e PQR : Our main algorithm. A; = O(1/t17¢)

e OPT : We fix the output vector, sampled from the Dirichlet distribution,

as [0,0,...,1], forcing the agent to estimate only optimistically.

e /logt/t : We imitate the schedule of p-DLTV (which does not satisfy the
sufficient condition we presented). Ay = O(y/logt/t)

e /logt/t + OPT : We imitate the schedule of DLTV (which does not satisfy
the sufficient condition we presented). We fixed the output vector, sampled

from the Dirichlet distribution, as [0, 0, ..., 1], forcing the agent to estimate

only optimistically. A; = |O(y/logt/t)]
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In this experiment, our proposed PQR is the only method that stably achieves
the maximum score with low variance. In the case of optimism (purple, orange
curve), the agent learns quickly in the early stages, but converges without
reaching the maximum score. In the case of fixed ambiguity set (blue curve),
it converges to suboptimal and eventually shows low performance. This result
implies the necessity of time-varying schedule of A;. Finally, when imitating the
schedule of p-DLTV (green curve), the performance also degrades implying that

the proposed sufficient condition is quite tight.

3.4 Related Works & Discussion

Randomized or perturbation-based exploration has been focused due to its strong
empirical performance and simplicity. In tabular RL, Osband et al. [74] proposed
randomized least-squares value iteration (RLSVI) using random perturbations
for statistically and computationally efficient exploration. Ishfaq et al. [47]
leveraged the idea into optimistic reward sampling by perturbing rewards and
regularizers. However, existing perturbation-based methods requires tuning of
the hyperparameter for the variance of injected Gaussian noise and depend
on well-crafted feature vectors in advance. On the other hand, PDBOO does
not rely on the scale of rewards or uncertainties due to the built-in scaling
mechanism of risk measures. Additionally, we successfully extend PQR to deep
RL scenarios in distributional lens, where feature vectors are not provided, but

learned during training.

3.4.1 Comparison with QUOTA

Zhang and Yao [111] have proposed Quantile Option Architecture(QUOTA) which
derives different policies corresponding to different risk levels and consider

them as options. By using an option-based framework, the agent learns a
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high-level policy that adaptively selects a pessimistic or optimistic exploration
strategy. While QUOTA has a similar approach in high-level idea, PQR gives a lot

of improvements in both theoretical analysis and experimental results.

e Theoretical guarantees of convergence toward risk-neutrality.
Since the agent selects via randomized risk criterion, the natural question
is:

“How should we control the injected randomness without sacrificing the

original purpose of risk-neutrality?”

In this work, we provide the sufficient condition for convergence without
sacrificing risk-neutral perspective. Although QUOTA explores by using
optimism or pessimism of a value distribution, there is no discussion

whether the convergence is guaranteed toward a risk-neutral objective.

¢ Explaining the effectiveness of randomized strategy.

QUOTA tested on two Markov chains to illustrate the inefficiency of expectation-
based RL. It assumed that each task has an inherent, but unknown, pre-
ferred risk strategy, so agents should learn hidden preference. In contrast,
we point out that the amount of inherent (intrinsic) uncertainty causes

the inefficiency of fixed optimism or pessimism based exploration.

e Significant performance difference in experimental results.

QUOTA is based on option-based learning which requires an additional
option-value network. While QUOTA aims to control risk-sensitivity by
transforming into an option O, the introduction of an option-value network
requires the agent to explore an action space |O| x |A|. This opposes the
idea of efficient exploration as a factor that increases the complexity

of learning. In contrast, PQR does not require a additional network and
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explores over the original action space. In addition, PQR does not artificially
discretize the ambiguity set of risk measurement. Another main reason
is that PQR does not depend on an greedy schedule which is well-known
for inefficient exploration strategies in tabular episodic MDP [48]. PQR
solely explores its own strategies which is a simple yet effective approach.
However, QUOTA depends on a greedy schedule in both quantile and option

networks.

3.4.2 Reproducibility issues on DLTV

For the expected concerns about the comparison with DLTV, we address some
technical issues to correct misconceptions of their performance. Before we
reproduce the empirical results of DLTV, Mavrin et al. [64] did not report each
raw scores of Atari games, but only the relative performance with cumulative
rewards comparing with QR-DQN. While DLTV was reported to have a cumulative
reward 4.8 times greater than QR-DQN, such gain mainly comes from VENTURE
which is evaluated as 22,700% from their metric (i.e., 463% performance gain
solely). However, the approximate raw score of VENTURE was 900 which is lower
than our score of 993.3. Hence, the report with cumulative rewards causes a severe
misconception that can be overestimated where the human-normalized score
is commonly used for evaluation metrics. For a fair comparison, we computed
based on mean and median of human-normalized scores and obtained results of
603.66% and 109.90%. Due to the absence of public results, however, DLTV was
inevitably excluded from the comparison with human-normalized score in the
main paper for reliability. In Table 3.3 and A.4, we report our raw scores and

human-normalized score of DLTV based on QR-DQN _zoo performance.
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Table 3.3: Performance comparison among QUOTA, DLTV, and PQR on 55 Atari
games. Values in the first block indicate the number of games (out of 55) where
the row method outperforms the column method.

Comparison QUOTA QR- PQR PQR PQR
> DQN_zoo > > >
QR- > QUOTA QR- DLTV
DQN_Zhang QR- DQN_Zhang
DQN_Zhang
# wins (out of 30 34 42 42 39
55)

Human-normalized score summary

Metric QR- QR- QUOTA DLTV PQR
DQN_zoo DQN_Zhang

Average HN Score 505.02 463.47 383.70 603.66 1078.00
Median HN Score 120.74 78.07 91.08 109.90 129.25

3.5 Summary

This chapter introduces a general framework for perturbation in distributional
Reinforcement Learning, leveraging the inherent characteristics of the return
distribution. We identify a critical limitation in traditional Optimism Under
Uncertainty exploration methods: they often conflate epistemic uncertainty with
aleatoric uncertainty by relying on variance estimates of the return distribution.
This confusion leads to a persistent risk-seeking bias and the collection of skewed

data during exploration.

To resolve this issue, we propose the Perturbed Quantile Regression (PQR)
algorithm. PQR facilitates robust action selection by introducing a randomly
perturbed risk measure applied to the distorted risk scale. Theoretically, we
demonstrate that PQR effectively avoids biased exploration while maintaining
convergence to the true optimal policy. Empirically, PQR achieves superior

performance over existing variance-based exploration methods across various
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benchmarks, including 55 Atari games. The PQR algorithm thus provides a
principled method to mitigate exploration bias in distributional RL, contributing

significantly to the field of risk-sensitive exploration.
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Chapter 4

Bellman Unbiasedness: Toward
Provably Efficient Distributional
Reinforcement Learning with
General Value Function
Approximation

While the distributional approach offers richer information about return un-
certainty, it introduces two key theoretical challenges that distinguish it from
expectation-based RL: (i) the infinite-dimensionality of the distribution and
(ii) the complexity of online distributional updates. In practice, we must rely
on approximations using a finite number of statistical functionals, such as cate-
gorical or quantile representations. However, previous work has shown that not
all statistical functionals can be exactly learned through the Bellman operator,
leading to the concept of Bellman Closedness [81], which characterizes preserved
functionals. While Bellman closedness is a necessary structural property, it is

insufficient for online learning; statistical functionals of the target distribution
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Figure 4.1: Venn-Diagram of Statistical Functional Classes. The diagram
illustrates categories of statistical functional. (Yellow N Blue) Within the linear
statistical functional class, Rowland et al. [81] showed that the only functionals
satisfying Bellman closedness are moment functionals. (Red N Blue) We extend
this concept by introducing the notion of Bellman unbiasedness, which not only
covers moment functionals but also includes central moment functionals from
the broader class including nonlinear statistical functionals. (Yellow N Blue®)
According to Lemmas 3.2 and 4.4 of Rowland et al. [81], categorical functionals
are linear but not Bellman closed. (A) Maximum and minimum functionals are
Bellman closed, while they are not unbiasedly estimatable. (B) Median and
quantile functionals are neither Bellman closed nor unbiased, highlighting that
they are not proper to encode the distribution in terms of exactness. The proofs
corresponding to each region are provided in Appendix B.3.

must also be unbiasedly estimated from the sampled distribution. This is criti-
cal in the context of developing an algorithm that efficiently explores from a
regret minimization perspective while simultaneously performing distributional
Bellman updates in an online manner.

To address this, we introduce the key concept of Bellman Unbiasedness,
a property ensuring precise information learnability of a distribution from a
finite number of samples in an online setting. We prove that the exponential-
polynomial functional remains the unique solution in a class including nonlinear

statistical functionals that satisfies both Bellman Closedness and Bellman Unbi-
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asedness. Based on this, we propose Statistical Functional Least-Squares Value
Iteration (SF-LSVI), an exactly learnable and provably efficient DistRL algo-
rithm with general value function approximation. Our framework yields the
tight regret upper bound O(dEH 3/2\/K), marking the first such result with a

weaker structural assumption compared to prior work in distRL.
4.1 Related Work

Distributional RL. In classical RL, the Bellman equation, which is based
on expected returns, has a closed-form expression. However, it remains unclear
whether any statistical functionals of return distribution always have their
corresponding closed-form expressions. Rowland et al. [81] introduced the notion
of Bellman closedness for collections of statistical functionals that can be updated
in a closed form via Bellman update. They showed that the only Bellman-closed
statistical functionals in the discounted setting are the moments Ez.,[Z¥]. More
recently, Marthe et al. [63] proposed a general framework for distRL, where the
agent plans to maximize its own utility functionals instead of expected return,
formalizing this property as Bellman Optimizability. They further demonstrated
that in the undiscounted setting, the only Wj-continuous and linear Bellman
optimizable statistical functionals are exponential utilities %log Ezylexp(AZ)].

In practice, C51 [12] and QR-DQN [31] are notable distributional RL algorithms
where the convergence guarantees of sampled-based algorithms are proved
[80, 82]. Dabney et al. [30] expanded the class of policies on arbitrary distortion
risk measures by taking the based distribution non-uniformly and improve the
sample efficiency from their implicit representation of the return distribution.
Cho et al. [23] highlighted the drawbacks of optimistic exploration in distRL,
introducing a randomized exploration that perturbs the distribution when the

agent selects next action.
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Table 4.1: Comparison for different methods under distributional RL framework.
‘H represents a subspace of infinite-dimensional space F°°. To bound the eluder
dimesion dg, Wang et al. [100] and Chen et al. [21] assumed the discretized
reward MDP.

. . . A - . . Finite Exactly
Algorithm Regret Eluder dimension dg  Bellman Completeness  MDP assumption Representation Learnable
0-DISCO - . o discretized reward,
[100] O(poly(dpH)VEK) dimp(H, €) distributional BC cmallloss botmd X X
V-EST-LSR 9 T 1 . IR . discretized reward,
1] O(dpH*VK) dimg(H, €) distributional BC lipschitz continuity X X
S[F(;ﬁf:]ll @(dEHT‘\/F) dimg(}"“ €) statistical functional BC none v v

RL with General Value Function Approximation. Regret bounds have
been studied for a long time in online RL, across various domains such as bandit
[1, 57, 83], tabular RL [5, 48, 52, 72, 74], and linear function approximation
[49, 103, 108]. In recent years, deep RL has shown significant performance using
deep neural networks as function approximators, and attempts have been made to
analyze whether it is efficient in terms of general function approximation [2, 50].
Wang et al. [101] established a provably efficient RL algorithm with general value
function approximation based on the eluder dimension dg [83] and achieves
a regret upper bound of O(poly(dgH)vK). To circumvent the intractability
from computing the upper confidence bound, Ishfaq et al. [47] injected the
stochasticity on the training data and get the optimistic value function instead
of upper confidence bound, enhancing computationally efficiency. Beyond risk-
neutral setting, several prior works have shown regret bounds under risk-sensitive
objectives (e.g., entropic risk [37, 59], CVaR [9]), which align with our approach
in that they are built on a distribution framework. Liang and Luo [59] achieved

the regret upper bound of O(exp(H)+/|S[?|A|/H2K) and the lower bound of
Q(exp(H)+/|S||A|HK) in tabular setting.

In Chen et al. [21], the regret bound is written as O(dpLoo(p) HVK), where Loo(p)
represents the lipschitz constant of the risk measure p, i.e., [p(Z2) —p(Z")| < Loo(p)||Fz = Fz/||oo-
Since Loo(p) > H in risk-neutral setting, we translate the regret bound into O(dr H*VK).
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DistRL with General Value Function Approximation. Recently, only
few efforts have aimed to bridge the gap between two fields. Wang et al. [100]
proposed a distributional RL algorithm, 0-DISCO, which enjoys small-loss bound
by using a log-likelihood objective. Similarly, Chen et al. [21] provided a risk-
sensitive RL framework with static lipschitz risk measure. While these studies
analyze within a distributional framework, they do not address the intractability
of implementation in infinite-dimensional space of distributions. In contrast,
our approach focuses on a statistical functional framework, providing a detailed

comparison with other distRL methods as shown in Table 5.1.

4.2 Preliminaries

Episodic MDP. We consider a episodic Markov decision process which is
defined as a M = (S, A, H,P,r) characterized by state space S, action space A,
horizon length H, transition kernels P’ = {P }jc(qr), and reward 7 = {7} he|n]
at step h € [H]. The agent interacts with the environment across K episodes.
For each k € [K] and h € [H], Hf = (3%,(1%,...,sb,a}{,...,si,a’z) represents
the history up to step h at episode k. We assume the reward is bounded by [0, 1]

and the agent always transit to terminal state Senq at step H + 1 with g1 = 0.

Policy and Value Functions. A (deterministic) policy 7 is a collection
of H functions {m), : S — A} . Given a policy 7, a step h € [H], and a
state-action pair (s,a) € S x A, the @ and V-function are defined as Q7 (s, a)(:
SxA—R)=E, [Zg{:h P (swyan) | sn = s,an = a| and V7(s)(: S = R) =

EW Zg:h rh/(sh/,ah/) ‘ Sp = S} .
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Random Variables and Distributions. For a sample space 2, we extend
the definition of the @)-function into a random variable and its distribution,

H
Z}{(s,a)(: SXxXAXxQ— R) = Z rh/(sh/,ah/) ’ Sp = S,ap = a,Qp = Wh/(sh/),
h/=h

nh(s,a)(: S x A— Z(R)) = law(Z} (s,a)).

Analogously, we extend the definition of V-function by introducing a bar nota-

tion.
) H
ZE()S X Q= R) =Y r(sw.aw) | sp=s,ap =mw(sw),
h'=h
(s)(: S = 2(R)) = law(Z] (s)).

Note that ZT(s) = ZT(s,m(s)) and 77 (s) = n7(s,m(s)). We use 7* to de-
note an optimal policy ( i.e., 7} (-|s) = argmax, V;7(s) ) and denote V;*(s) =
Vi (5), @5(5,a) = QF (s5,a), (s, @) = 1" (5,0), and 7(s) = 77" (5). For no-
tational simplicity, we denote the expectation over transition, [P,V ,](s,a) =
B p, (15,0 Viz1 () PrZi (s, a) = By p, (fsa) Zh 41 (5), and [Paiff (s, a) =
By b, (-|5,0)Tha1(5))- 2 For brevity, we refer to 7™ simply as 7.

In the episodic MDP, the agent aims to learn the optimal policy through a
fixed number of interactions with the environment across a number of episodes. At
the beginning of each episode k(€ [K]), the agent starts at the initial state s¥ and
choose a policy 7%. In step h(€ [H]), the agent observes s (€ S), takes an action
a¥ (e A) ~ wk(-|sF), receives a reward rp,(sf, af), and the environment transits
to the next state s§, ~ Py (:|s}, af). Finally, we measure the suboptimality of
an agent by its regret, which is the accumulated difference between the ground
truth optimal and the return received from the interaction. The regret after K

episodes is defined as Reg(K) = Zszl VE(sh) — Vl’rk(slf)

*Note that Eg/ p, (.|s,a)Th1(s") is a mixture distribution.
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Distributional Bellman Optimality Equation. Recall that 7} satisfies

the following optimality equation:

(8, @) = (T wil1)(s, @)
= Es’wPh(-|s,a),a’~7rZ(-\s’) [(Brh)#nz+1 (Slv a/)]

= (Br,)#[Prij11](s, a)

where B, : R — R is defined by B,(z) = r + z, and gxn € Z(R) is the
pushforward of the distribution n through g (i.e., gzn(A4) = n(g~*(A)) for any
Borel set A C R).

Additional Notations. For a given N, we denote an N —dimensional function
class FN = FU x ... x FIN) C {f =[fM,... fMN]: 8 x A—>RN}. Given
a dataset D = {(s¢, at, [zgl), . ,zt(N)])}El C S x A xRY aset of state-action
pairs Z = {(s¢, at)}‘till C S x A and for a function f: S x A — RY we define
the norm || £ |loc, | fllco.1s | f]lD, || fllz as written in Appendix B.1. For a set of
(vector-valued) functions FV C {f : S x A — RV}, the width function of (s, a)

is defined as w™ (FN, s, a) = max g rN £ (s,a) — g™ (s,a)|.
4.3 Statistical Functionals in Distributional RL

In this section, we define two key concepts in the distRL framework: the statistical
functional and the sketch. We also illustrate Bellman closedness, a crucial
property from Bellemare et al. [13]. Next, we introduce Bellman unbiasedness,
a novel concept that complements the previous property and is essential for
provable efficiency. As shown in Figure 4.2, quantile functionals cannot be
updated in an unbiased manner (as proved in Theorem 4.3.3), demonstrating
that only certain sketches can be updated exactly. We then show that the only

sketch satisfying both properties is the moment functional, which is unique
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Figure 4.2: Ilustrative representation of sketch-based Bellman updates for a
mixture distribution. Instead of updating the distributions directly, each sampled
distribution is embedded through a sketch ¢ (e.g., mean u, quantile ¢;). The
transformation ¢, aims to compress the mixture distribution into the same
number of parameters, ensuring unbiasedness to prevent information loss.

among statistical functionals. Finally, we discuss the intractability of the previous
structural assumption, distributional Bellman Completeness, and its tendency to
cause linear regret. To address this, we introduce statistical functional Bellman

Completeness, a relaxed assumption, and explain why it satisfies both properties.

4.3.1 Bellman Closedness

Definition 4.3.1 (Statistical functionals, Sketch; [13]). A statistical func-
tional is a mapping from a probability distribution to a real value ¢ : Z(R) — R.
A sketch is a vector-valued function ¥1.y : Z(R) — R specified by an N-tuple
where each component is a statistical functional,

YN () = @W1(), -, on ().
We denote the domain of sketch as Py, . (R) and its image as Iy, , =
{Vin() + 7 € Py, n(R)}. We further extend to state return distribution
functions ¥1.n(7) = <¢1:N(77(5)) 15 € S) .

Definition 4.3.2 (Bellman closedness; [81]). A sketch .y is Bellman closed
if there exists an operator Ty, : I;ELN — I;ELN such that

YN (TH) = Ty rn(@)  for all 7 € 2(R)S
which is closed under a distributional Bellman operator 7 : Z(R)S — Z2(R)S.
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Figure 4.3: Bellman Closedness Figure 4.4: Bellman Unbiasedness

Figure 4.5: Illustration of Bellman Closedness and Bellman Unbiasedness. The
above path represents an ideal distributional Bellman update. Due to the
infinite-dimensionality, the update process should be represented by using a finite-
dimensional embedding (sketch) 1. Since the transition kernel P is unknown, the
below path describes that the implementation should sample the next state and
update by using 77/, with the empirical transition kernel P. A sketch 1) is Bellman
unbiased if 72, o7 can unbiasedly estimate ¢ o 7T through some transformation

Gy, i.e., Y(Tn) = Eplpy o TY(n)].

Bellman closedness is the property that a sketch are exactly learnable when
updates are performed from the infinite-dimensional distribution space to the
finite-dimensional embedding space. While classical Bellman equation implies the
existence of Bellman operator for expected values, not all statistical functional
has such corresponding Bellman operator. Precisely, Rowland et al. [81] showed
that the only finite linear statistical functionals that are Bellman closed are
given by the collections of statistical functionals where its linear span is equal

to the set of exponential-polynomial functionals. 3

Theorem 4.3.3. Quantile functional cannot be Bellman closed under any
additional sketch.

While Rowland et al. [81] focused on “linear” statistical functionals in defining
a sketch (i.e., (1) = Ezp[h(Z)] for some h), leaving questions about nonlinear
functionals, we extend this by showing that "nonlinear” statistical functionals,

such as maximum or minimum, can also be Bellman closed. Additionally, while

3In discounted setting, a unique solution becomes moments. We’ve overwritten it for
convinience.
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their proof implicitly treated quantiles as linear functionals, we provide a
technical clarification in Appendix B.3.1 where we formally demonstrate that

no sketch Bellman operator exists for quantiles.

4.3.2 Bellman Unbiasedness

While the intractability caused by infinite-dimensionality was addressed in Bell-
man closedness, another intractable element which has not yet fully tackled
is the sampling of the next state. During the implementation, note that the
agent does not have access to the transition kernel P. Instead, the agent can
only access the empirical transition kernel P(-|s,a) = + 25:1 1{s, = |s,a}
which is derived from K sampled next states. This limitation implies that
the operator should be treated as an empirical operator ﬁp, rather than 7
(i-e., 721[)(77) = @Z)((Br)#[@’ﬁ])) Therefore, we naturally introduce a new no-
tion of Bellman unbiasedness to unbiasedly estimate the expected distribution
(Br)#Ey p(|s,a)[7(s)], which is a mixture by transitions, from the sample distri-

bution (B,)x7(s").

Definition 4.3.4 (Bellman unbiasedness). A sketch 1(= ¢1.5) is Bellman
unbiased if a vector-valued estimator ¢y = ¢y (¢(-), -, (+)) : (I;Z)k — I;Z
exists where the sketch of expected distribution (B,)4Ey p(.|sq)[7(s")] can be
unbiasedly estimated by ¢, using the k sampled sketches from the sample
distribution (B,)x7(s’), i.e.,

Eyp l% ( (B ). (B 471 )]

~~

k sampled sketches from sample distribution Tww(ﬁ(s))

= w((Br)#Es'NPHS@) [77(3/)]>-

Bellman unbiasedness is another natural definition, similar to Bellman

closedness, which takes into account a finite number of samples for the transition.
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For example, mean-variance sketch is Bellman unbiased as the following unbiased

estimator ¢, ,2) exists for k sample estimates:

On the other hand, median functional is not Bellman unbiased since there is
no unbiased estimator for median. Then, the following question naturally arises;
"Which sketches are unbiasedly estimatable under the sketch-based Bellman
update?”

The following lemma answers this question.

Lemma 4.3.5. Let Fj; be a CDF of the probability distribution 7 € Py, (R)".
Then a sketch is Bellman unbiased if and only if the sketch is homogeneous

over ,@w(R)S of degree k, i.e., there exists some vector-valued function h =
h(zy, - o) X = RY such that

W () —/---/h(ml,m ceR)dFy(a1) - - dFy(ap).

Lemma 4.3.5 states that in statistical functional dynamic programming, the
unbiasedly estimatable embedding of a distribution can only be structured in
the form of functions that are homogeneous of finite degree [42]. To illustrate
that homogenity defines a broader class than linear functionals, consider the
variance as a simple example. Variance is clearly not a linear functional, as it is

non-additive. However, it can be written as

Var(f) = Ez,i[(Z1 — BzymsZ2))?)

= EZl,ZzAJﬁ[ZlQ — 22172 + 222] = EZLZTJﬁ[h(Zl, ZQ)]

which implies the homogenity of degree 2. Taking this concept further and

combining it with the results on Bellman closedness, we prove that even when
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including a nonlinear statistical functional, the only sketch that can be exactly
learned and unbiasedly estimated in a finite-dimensional embedding space is the

moment sketch.

Theorem 4.3.6. The only finite sketches that are both Bellman unbiased and
Bellman closed are given by collections of 11,...,¢¥N where its linear span
{Zﬁfzo antn| an € R YN} is equal to the linear span of the set of exponential
polynomial functionals {n — Ezwn[Zl exp(AZ)]| 1 =0,1,...,L, A € R}, where
Yo 1s the constant functional equal to 1.

Compared to Rowland et al. [81], we extend beyond linear statistical func-
tionals to include nonlinear statistical functionals, showing the uniqueness of
the moment functional. As shown in Figure 4.1, our theoretical results not only
show that high-order central moments such as variance or skewness are exactly
learnable and unbiasedly estimatable, but also reveal that other nonlinear sta-
tistical functionals like median or quantiles inevitably involve approximation

errors due to biased estimations.

Necessity of Bellman unbiasedness. Bellman unbiasedness ensures that
updates can be unbiasedly performed when only a finite number of sampled
sketches are available. In other words, it guarantees that the sequence of sampled
sketches forms a martingale, enabling the construction of confidence regions
through concentration inequalities. This property is crucial for establishing

provable efficiency in terms of regret minimization.

Complementary roles of unbiasedness and closedness. At first glance,
Bellman Unbiasedness (BU) may appear to be a stricter subset of Bellman
Closedness (BC). However, as illustrated in Figure 4.1, the relationship is

more subtle: for example, the categorical sketch is BU but not BC, whereas
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functionals like the maximum or minimum are BC but not BU. More precisely,
BU guarantees the existence of an unbiased estimator of the ground-truth sketch
given a finite number of sampled sketches. In contrast, BC plays a complementary
role by ensuring that the update process consistently provide such sketches.
If a sketch is BU but not BC-as in the case of the categorical sketch—then
the update process cannot continue providing new sampled sketches, making

dynamic programming infeasible.
4.3.3 Statistical Functional Bellman Completeness

We consider distributional reinforcement learning with general value function
approximation (GVFA). For successful TD learning, GVFA framework for
classical RL commonly requires the assumption, Bellman Completeness, that
after applying Bellman operator, the output lies in the function class F [6, 47,
101]. As a natural extension, our approach receives a tuple of function class
FN C{f:S8x A— RV} as input to represent N moments of distribution.
Building on this, we assume that for any 7 : S — £([0, H]), the sketch of target
function lies in the function class FV.

Assumption 4.3.7 (Statistical Functional Bellman Completeness). For any
distribution 7 : S — 2([0, H]) and h € [H], there exists f; € F~ which satisfies

fa(s,a) = 1N ((Br,)#[Pail](s,a)) V(s,a) € S x A

DistBC inevitably leads to linear regret. In the seminal works, Wang
et al. [100] and Chen et al. [21] assumed that the function class H C {n: Sx A —
2([0, H])} follows the distributional Bellman Completeness (distBC) assumption
(i.e.,if n € H for all m, h € [H], T}n € H). This seems natural, but constructing
a finite-dimensional subspace H that satisfies distBC is quite challenging. Since
the distributional Bellman operator is a composition of translation and mixing

distributions for the next state, it implies that a function class H must be closed
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under translation and mixture. However, when considering the representation of
infinite-dimensional distributions using a finite number of representations, it is
not trivial that the mixture of distributions can also be represented with the
same number of representations. For example, while a Gaussian distribution can
be represented using two parameters (p, 02), a mixture of K Gaussians generally
requires 2K representations.

To avoid the issue of closedness under mixture, both previous studies assumed
a discretized reward MDP where all outcomes of the return distribution are
able to discretized into an uniform grid of finite points. Unfortunately, the
approximation error introduced by the discretization is not negligible when it
comes to regret. This is because model misspecification, which is the error when
the model fails to represent the target, typically leads to linear regret.

Definition 4.3.8 (Model Misspecification in distBC). For a given distribution
class H which is the finite-dimensional subspace of the space of all distribution
F°, we call ( the misspecification error

¢:=inf sup || fz(s,a) — (Br,)x[Puill(s, a)||
freM (s,a)eSxA

for any 7: S — ([0, H]) and h € [H].

Note that ( is strictly positive unless the function approximator f; can
represent any distribution in the finite-dimensional subspace H generated by
translation and mixture. In a classical linear bandit setting [108], a lower bound
with misspecification error ¢ is known to yield linear regret ((K). Therefore,
redefining Bellman Completeness within the infinite-dimensional distribution
space is not appropriate, as it either imposes strong constraints on the MDP
structure or leads to linear regret. To circumvent model misspecification, we
revisit the distributional BC through the statistical functional lens. We propose
a novel framework that matches a finite number of statistical functionals to the

target, rather than the entire distribution itself.
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4.4 SF-LSVI: Statistical Functional Least Squares Value
Iteration

In this section, we propose SF-LSVI for distRL framework with general value
function approximation. Leveraging the result from Theorem 4.3.6, we introduce
a moment least square regression. This allows us to capture a finite set of moment
information from the distribution, which can be unbiasedly estimated, thereby
leading to the truncated moment problem [84, 89]. Unlike previous work [21, 100]
that estimates in infinite-dimensional distribution spaces, our method enables to
estimate distribution unbiasedly in finite-dimensional embedding spaces without

misspecification error.

Algorithm 3 Statistical Functional Least Squares Value Iteration (SF-LSVI)

Input: failure probability 6 € (0,1) and the number of episodes
K

1: for episode £k =1,2,..., K do

2:  Receive initial state s¥

3:  Initialize ¥1.n (74 (-)) < OV

4 for step h=H,H —1,...,1do
5

k T T . =k T
Dh — {Shu Apry wlzN((Brh/)#nh—H(Sh’—&-l)) }(T,h’)e[kfl]x[H]
3 // Data collection
6 fb e agminger |l bt
istribution Estimation
& bﬁ(?) %w(l)((‘ﬁN)§77)
: Qi) e min{(fi) V() + B ). H)
9 m() =argmaxeea Q5 a) , V() = Qi( mi ()
// Optimistic planning
00 e (nfG) < QECL)
e e (uhG) e (mind (7))

2 G (B0) < VO, van (10) < vun (675 0)
13: for h=1,2,...,H do

nE2:N]

14: Take action af « 7 (s¥)
15: Observe reward 7 (sf, af) and get next state s ;.
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Overview. At the beginning of episode k € [K], we maintain all previous
samples { (87, a7/, 77/) } (. h)ek—1)x[m) and initialize a sketch ¢1:N(ﬁ’ﬁ1+1(‘)) = 0N,
For each step h = H,...,1, we compute the normalized sample moments of

target distribution {(BT;/ )1 (Sha1)} nelm] With the help of binomial theorem,

EI(ZE. (sT, ) 4 o7 )"
(B o oFs)) o= PP Ol ) 417"

ZZ’:O Hn,i/in' <77h(5;/+1)) (rz,)n—n/
- Hn—1

and iteratively solve the N-moment least squares regression
k-1 H

fhn — argmmz Z (Zf(” ShiyQpr) — Pn ((Br;/)#ﬁili-l-l(s;—zurl)))Q

=1h'=1 n=1

based on the dataset Dﬁ which contains the sketch of temporal target distri-
bution ¥1.x <(BT;/>#,’7}I€Z+1(82/+1)>' Then we define QF(,-) = min{(f,’f’ﬁ)(l)(.’ D+
bfl(-, -), H} and choose the greedy policy Wﬁ() with respect to Qﬁ Next, we
update all N normalized moments of @Q-distribution .5 (77’,;(,)) and V-
distribution 1. <ﬁ£()) We repeat the procedure until all the K episodes

are completed.

Remark 4.4.1. For an optimistic planning, we define the bonus function as the
width function b¥(s,a) = wi((FV)¥,s,a) where (FV)¥ denotes a confidence
region at step h, episode k. When F is a linear function class, the width function
can be evaluated by simply computing the maximal distance of weight vector. For
a general function class F, computing the width function requires to solve a set-
constrained optimization problem, which is known as NP-hard [33]. However, a
width function is computed simply for optimistic exploration, and approximation
errors are known to have a small effect on regret [1]. We leave the study of
computationally efficient algorithms for the width function as a promising future
work, and replace with one of the numerical approximations mentioned above.

4.5 Theoretical Analysis

In this section, we provide the theoretical guarantees for SF-LSVI under Assump-

tion 4.3.7. Applying proof techniques from Wang et al. [101] and extending the

79



result to a statistical functional lens, we generalize eluder dimension [83] to the
vector-valued function, which has been widely used in RL literatures [6, 49, 101]

to measure the complexity of learning with the function approximators.

Definition 4.5.1 (e-dependent, e-independent, Eluder dimension for vector—
valued function). Let € > 0 and Z = {(s4,a;)}/.; € S x A be a sequence of
state-action pairs.

e A state-action pair (s,a) € S x A is e-dependent on Z with respect

to FN if ||f — gllz < € for any vector-valued function f,g € FV, then
[ (s,a) — gV (s,a)| <e.

e An (s,a) is e-independent on Z with respect to FV if (s,a) is not
e-dependent on Z.

e The e-eluder dimension dimg(FY,¢) of a vector-valued function class
FN is the length of the longest sequence of elements in S x A such that,
for some € > €, every element is €-independent on its predecessors.

We assume that the function class FV and state-action space S x A have

bounded covering numbers.
Assumption 4.5.2 (Covering number). For any € > 0, the following holds:

e there exists an e-cover C(FV,¢) C FN with size |C(FN,¢)| < N(FVe),
such that for any g € F¥, there exists ¢’ € C(FV,€) with ||g — ¢||oo1 < €.

e there exists an e-cover C(S x A, €) with size |C(S x A, €)] < N(S x A, e),
such that for any (s,a) € S x A, there exists (s',a’) € C(S x A, €) with
maxser |f(s,a) — f(s',a')] < e

The following two lemmas give confidence bounds on the sum of the ls norms

of all normalized moments.

Lemma 4.5.3 (Single Step Optimization Error). Consider a fized k € [K] and
a fized h € [H). Let ZF = {(s},,a})}repr—1) be a state-action pairs and its dataset

D;iﬁ = {(Sz’a’:’¢1:N<(B:h’)#ﬁ(8’:'+1))>}Te[k,l] for any 7 : S — ([0, H]).

Define f}lzﬁ = argmin s zn Hf”%’g . For any 0 and 6 € (0,1), there is an event
5N
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E(1,0) such that conditioned on E(7,0), with probability at least 1 — §, for any
7S — 2([0,H) with ||Y1.5(7) — Y18 (1) ||co1 < 1/T ,we have

| Frr () = e (B 4P ) |

k
Zh

< (NéH\/log(l/(S) + log N (FN, 1/T)>
for some constant ¢’ > 0.

Due to the definition of Bellman unbiasedness, we remark that moment
sketch has a corresponding vector-valued estimator ¢y, , as an identity and
leads to a concentration results as the sampled sketches forms a martingale
with respect to the filtration [}, induced by the history of {(s,a},)}rejx—1) (i-e.,
E w1 ((Br)4n(s7) ) [Fr] = vun ((Br )4 Puil(s7 ap) ).

Another notable aspect in Lemma 4.5.3 is using normalized moments

E[Z"]/H™ ! instead of moments E[Z"], as it reduces the size of the confi-
dence region from O(H™) to O(v/N). This adjustment is akin to scaling the
optimization function in multi-objective optimization to treat each objective
equally, which effectively prevents the model from favoring objectives with larger

scales.

2

Lemma 4.5.4 (Confidence Region). Let (FN)f = {f € FN|||f — fF ok <
h

h,i
B(FN,6)}, where

B(FN,8) > ¢ - NH?(og(T/8) + log N (FN,1/T))

for some constant ¢ > 0. Then with probability at least 1 — /2, for all k,h €
(K] x [H], we have

U ((Bry ) Baif ), )) € (F)f

Lemma 4.5.4 guarantees that the sequence of moments from the target
distribution ;.5 ((Brh(. )2 Prif 1 )) lies in the confidence region (FV)F

)

with high probability. Supported by the aforementioned lemma, we can further
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guarantee that all Q-functions are optimistically estimated with high probability

and derive our final result.

Theorem 4.5.5. Under Assumption 4.5.7, with probability at least 1 — 6,
SF-LSVI achieves a regret bound of

Reg(K) < 2Hdimp(FN,1/T) + 4H /K H log(1/5)

Under weaker structural assumptions, we show that SF-LSVI enjoys near-
optimal regret bound of order O(d pH %\/F ), which is V/H better than the state-
of-the-art distRL algorithm V-EST-LSR [21]. For the linear MDP setting, we
have d = O(d) and thus SF-LSVI achieves a tight regret bound as O(Vd2H3K)
which matches a lower bound Q(vVd?H3K) [114]. In our analysis, we highlight
two main technical novelties which significantly reduces the degree of regret in

distRL framework;

1. We refine previous lemma of Osband et al. [74] and Wang et al. [101] to
remove the dependency of 3(FY,1/6) (See Appendix B.4.4), ensuring that
regret bound depends only on the pre-defined function class, not on the

number of moment extracted.

2. As shown in Table 5.1, we define the eluder dimension dg in a finite-
dimensional embedding space F, while other methods rely on an infinite-

dimensional distribution space H C F*°°.
4.6 Summary

This chapter addresses the fundamental challenge of statistical efficiency in
Distributional Reinforcement Learning when combined with general value func-
tion approximation. Prior work introduced the concept of Bellman closedness;
however, it fails to guarantee that statistical functionals can be updated without

bias from finite samples in online learning settings. To resolve this, we propose
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the novel concept of Bellman Unbiasedness. This concept precisely characterizes
which statistical functionals are both preserved under Bellman updates and
unbiasedly estimable from a finite number of samples. Our analysis theoretically
demonstrates that only the family of exponential-polynomial functional satisfies
these two necessary properties. Based on this insight, we design the Statistical
Functional Least-Squares Value Iteration (SF-LSVI) algorithm, which is the
first theoretically efficient DistRL algorithm capable of handling general value
function approximation. The SF-LSVI algorithm achieves a tight regret bound
of O(dEH %\/f ), which represents a significant improvement over previous

theoretical results.
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Chapter 5

Policy-labeled Preference Learning:
Is Preference Enough for RLHF?

Preference-based Reinforcement Learning (PbRL), a branch of RLHF, focuses
on learning optimal policies directly from human preferences, mitigating the
difficulty of crafting explicit, numerical rewards. Recent advancements, notably
Direct Preference Optimization (DPO) [77], simplify this process by directly
optimizing the policy based on preferences, bypassing the need for an explicit
reward model. While DPO has shown strong performance in domains like LLM
fine-tuning, its underlying assumptions are largely shaped by deterministic
environments. However, in standard RL settings, state transitions involve en-
vironmental stochasticity, introducing inherent uncertainty that complicates
policy optimization and inference.

This contrast highlights a key limitation when applying DPO to general
RL problems. We found that DPQO’s framework implicityly assumes that the
observed data was generated by the optimal policy, creating a likelihood mismatch

that is exacerbated by environmental randomness. Furthermore, this challenge
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is critical in offline RL, where the pre-collected datasets often originate from
diverse, unlabelled policies, making it difficult to distinguish whether outcome
quality stems from policy suboptimality or external stochasticity. This leads to

the fundamental question:

Can preference data generated by diverse policies sufficiently quide sequential
decision-making, or is additional information required?

To address this, we propose Policy-labeled Preference Learning (PPL), a
novel RLHF framework that leverages regret-based preference modeling while
explicitly labeling the behavior policy. PPL incorporates policy information
directly into the learning process to disentangle the effects of environmental
stochasticity and behavior policy suboptimality. We provide theoretical insights
by defining a reward equivalence class and deriving a bijective mapping that
allows regret to be expressed as a uniquely defined function of the optimal policy.
We further introduce contrastive KL regularization for stable policy alignment.
Empirically, PPL is evaluated on homogeneous and heterogeneous offline datasets
in the MetaWorld environment, demonstrating superior performance in policy

alignment compared to conventional preference-based methods.

5.1 Preliminaries

Maximum Entropy Framework. We define the MDP as M = (S, A,P,r,7)
characterized by state space S, action space A, transition kernels P which
represents the probability of the next state s’ given the current state s € S
and action a € A, underlying reward r € [ruyin, "max|, and discount factor
~. For notational simplicity, we denote the expectation over trajectories 7 =

(so, a0, s1,a1, - -+ ) generated by a policy 7 and the transition kernel P as E,p=[-].

The MaxEnt framework provides an optimal policy which not only maximizes
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the expected cumulative return, but also the entropy for each visited state:
TMaxEnt = aT'g mf}xETpr [nyt(r(st, ar) + aH™(+|s)) ],
>0
where H™(-|s) = —Er[log7(+|s)] is the entropy of policy 7 at state s. Here,
« is a temperature hyperparameter that determine the relative importance of
entropy and reward. For clarity, we say my;, . pn¢ @S a-optimal. In addition, soft
Q-function Q7 (s, a) is defined as the expected cumulative return augmented by
an entropy terms, expressed as;
Q" (s,a) =r(s,a) + E pr [Z’yt(r(st, ar) + oM™ (+sy)) |-
>0
Analogously, we can derive soft value function V™ (s) and soft Bellman

equation as follows:
V() = Bqrr[Q7 (5, 0) — alog m(als)],
Q"(s,0) = 1(s,0) +7Eqz [V ()]
for all state-action pairs (s,a) € S x A. Note that the interpretation of the
value function is modified by involving the entropy term in the MaxEntRL,
i.e., V7(s) # Ex[Q™ (s, a)]. For an a-optimal policy 7*, Ziebart [117] derived the
relationship between the optimal policy and optimal soft Q-function Q™ :
7 (als) = exp (a7 (@ (s,0) = V™ (5)))
V™ (s) = alog/ exp (ailQW* (s, a)da) .

acA

5.1.1 Preference-based Reinforcement Learning

Designing a reward function that accurately aligns with human behaviors is
inherently challenging. To address this, PbRL focuses on learning the optimal

policy directly from human preferences rather than relying on predefined rewards.
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Table 5.1: Comparison for different preference models under PbRL framework.

Algorithm Score Function Meaning
PEBBLE
58] (8¢, at) reward
DPO AT
7] log 7y, (y[s)/mer(yls)  relative likelihood
DPPO . .
] —EGNW(,|St>[|\a — atllo]  action distance
CPL o T :
44] Q" (s, ar) — V™ (sy) optimal advantage
PPL s
[Ours] —(V™(st) — Q" (st, ar)) regret

In this context, we adopt a reward-free MDP M\ r within the MaxEnt framework.
We define a segment ¢ = (so, ag, - . ., Sk, ax) as a sequence sampled from a dataset
D. Specifically, human annotators or Al systems are tasked with comparing pairs

of trajectory segments (¢, (™), where ¢ is preferred over ¢~ (i.e., (T = (7).

Score-based Preference Model. Score-based preference model is a natural
generalization of RLHF for modeling human preferences through score functions,
instead of partial sum of rewards [58]. This approach extends the Bradley-Terry
model [16], where pairwise comparisons are used to infer relative preferences, by
introducing a score function that evaluates all observed state-action pairs within
a segment. The preference model then assigns probabilities proportional to the
sum of these scores, aligning with the Bradley-Terry framework. To implement
the preference model using a neural network, the score function is parametrized
as Sy, and the model is trained by minimizing the cross-entropy loss between
its predictions and the preference labels derived from the dataset D, as follows:

Ps, (¢ = ¢l =0 (D0 Sulsi ) = Sulsi s ap)).

>0
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Figure 5.1: Visualization of 5000 samples in Bin-Picking-v2 environment.
While the ground-truth reward (left) is sparse and mainly provided upon
task completion, regret (right) is more evenly distributed across all timesteps,
making it a more informative score function for partial trajectory evaluation.

L(Sy; D) = —E(c+ ¢-)~p [log Ps,[CT = T,

where o(z) = 1/(1 + e¢~%) and each (s;,a;") and (s; ,a; ) is the t-th state and
action of preferred segment (T and less preferred segment ¢, respectively. For
notational simplicity, we abbreviate E(+ —).p as Ep.

Although it is unclear how humans evaluate their preferences, preference
models can be improved to better align with human judgment by refining them
based on intuitive examples. If the score function does not align with human
preference evaluation, the model may produce counterintuitive outcomes. For
example, Knox et al. [55] demonstrated that using the partial sum of rewards as
a score function overlooks a critical issue in sparse reward MDPs: all segments
that fail to reach the goal are treated as equally preferable, regardless of their
contributions.

As shown in Figure 5.1, sparse reward MDPs provide little feedback for the
states that do not reach the terminal goal, leading to meaningless comparison
of the preferences in the early- and mid-stage segments based solely on return

sums. In contrast, regret is more evenly distributed across timesteps, making
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it a more effective score for comparing segment preferences regardless of their
position in the trajectory. This highlights the importance of modeling preference
with the score function that aligns with human intuition. Various approaches to

designing such score functions have been proposed, as summarized in Table 5.1.

Optimal Advantage-based Preference Model. Hejna et al. [44] proposed
Contrastive Preference Learning (CPL), which is based on an optimal advantage-
based preference model [55], treating as a regret-based preference model. The
CPL score is defined as the difference between the value of the action taken and
the average value under the optimal policy, (i.e., Ar(s¢,az) == Q™ (s¢,as) —
V™ (s;) = alogn*(as|s;).) Leveraging the relationship between the optimal
advantage and the optimal policy within the MaxEnt framework, their objective
can be reformulated into a policy-based expression, enabling the optimal policy
to be learned directly without relying on reward:

Lcprn)(my; D) = —aEp {loga(Zlog ﬂw(aﬂszr)—)\log 7r¢(at_|st_)>]. (5.1)

>0

However, the standard score-based preference loss is convex but not strictly
convex, leading to the existence of multiple optimal solutions. Hejna et al. [44]
identified that the shift-invariance property of the loss function (i.e., Pg(, DO =
Pg(x w)) causes out-of-distribution actions to be overly weighted, deteriorating
learning performance. To mitigate this issue, they introduced an asymmetric
regularizer A\, which reduces the gradient weight on less preferred actions,

breaking the inherent symmetry and stabilizing the learning process.
5.2 Policy-labeled Preference Learning

This section introduces the regret-based preference model and its distinctions

from prior work, with a focus on the issue of likelihood mismatch, where sampled
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Figure 5.2: Unlike existing DPO algorithms, PPL aligns segment likelihoods by
incorporating behavior policies. It reweights gradients based on closeness to the
optimal policy, forming a contrastive learning framework.

segments are misinterpreted as optimal, leading to suboptimal learning. To
address this, we propose Policy-labeled Preference Learning (PPL), which
employs a regret-based model to accurately estimate segment likelihoods. Finally,

we present theoretical results derived from the PPL framework.

5.2.1 Is Preference Enough for RLHF?

Negative Regret vs Optimal Advantage. In prior work, Hejna et al.
[44] utilized the optimal advantage as the score in CPL to introduce a regret-
based preference model. While they presented these two concepts as equivalent,
they differ significantly in their precise definitions and implications. Optimal
advantage refers to the relative benefit of taking a specific action a under the
optimal policy 7* (i.e., Q™ (s,a) — V™ (s)). In contrast, negative regret captures
the performance difference between the behavior policy 7w and the optimal policy
7™ (i.e.,Q™(s,a) — V™ (s)). The key difference between these concepts lies in
whether the behavior policy is incorporated into the score.

From a perspective of regret, the optimal advantage disregards the source
of the trajectories and evaluates the actions taken solely based on Q™ . Con-
sequently, it implicitly treats all trajectories as if they were generated by the

optimal policy. This raises an important question: what impact does this as-
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Figure 5.3: Tllustration of the likelihood mismatch problem. Although the behav-
ior policy 7 differs from the optimal policy 7*, the learning process incorrectly
assumes all data is generated by 7*. As a result, while 7* prefers s;, this mis-
interpretation leads to the incorrect conclusion that so is preferred, causing
suboptimal learning outcomes.

sumption — treating all behavior polices as optimal — have on the regret-based

learning process?

Likelihood Mismatch. Likelihood mismatch occurs when outcome differences
between two segments, which actually stem from behavior policy differences,
are mistakenly attributed to environmental stochasticity. This misinterpretation
leads to incorrect likelihood assignments. Figure 5.3 illustrates this issue in an
offline setting where offline data from both a suboptimal policy 7 and an optimal
policy 7* lacks explicit policy labels. In this scenario, all data is mistakenly
assumed to be generated by the optimal policy 7*, leading to misinterpretations
during learning.

To understand how preference labels are assigned in this setting, let us first
consider the left-side figure. The red trajectory, generated by the suboptimal
policy 7, assigns a higher score (+10) to s2, making it appear more preferable

than s1. In contrast, the black trajectory, generated by the optimal policy 7*,
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assigns a higher score (+20) to s, leading to the opposite preference. These
conflicting results can be properly distinguished when policy labels are available,
allowing the model to infer the suboptimality of m by evaluating preferences

separately for each policy.

Now consider the right-side Figure 5.3, where the same data is used but
without policy labels. Since all data is incorrectly assumed to originate from
7*, the model observes contradictory outcomes—so being preferred in one case
and s; in another—despite assuming a single policy. Lacking policy labels, the
model misinterprets this discrepancy as environmental stochasticity rather than
differences in policies, distorting the learned MDP and leading to incorrect
likelihood estimates for trajectories. To mitigate this issue, it is crucial to
explicitly track and incorporate the behavior policy 7 for each segment, ensuring
accurate interpretation and proper differentiation of feedback. Thus, replacing
optimal advantage with regret, which reflects the suboptimality of the behavior

policy, provides a principled solution.

Regret-based Model Requires the Behavior Policy. In essence, regret
quantifies how much better we could have done if we had followed the optimal
policy instead of the behavior policy. A larger regret indicates that the behavior
policy is significantly less efficient compared to the optimal policy. We remark
that the regret is the difference between the expected return under optimal
policy and the achieved return under behavior policy. Based on the conventional

definition of regret, we reformulate negative regret in a policy-based form within
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the MaxEnt framework:

— RegJ- (Stv at)

== V™ (s1) + Q7 (84, ay) (5.2)
expected return under 7*  achieved return under 7
Thm 5.2.4 —
(Thm 5.2.4) a( logm*(ay|s,) —  Dxu(w||7*; s¢,ar) ) (5.3)
———

increase likelihood  decrease sequential forward KL
In summary, the regret for the preferred segment can be decomposed into
two components: First, it increases the likelihood of actions taken in preferred
segments, aligning the behavior policy with human preferences. Second, it reduces
the sequential forward KL divergence, correcting for likelihood mismatch by
considering long-term differences between the behavior policy and the optimal
policy. Analogously, for the less preferred segment, the regret exhibits the
opposite tendencies. Based on Equation (5.3), our objective can be formulated
as follows:
Lppr,(my; D) = —Ep [loga( - Z Reg;: (s a;) — Regz; (s;, at_))}
>0

where the policy label for the preferred and less preferred segments are denoted
as w1 and 7, respectively. The detailed derivation of this formulation will be

introduced in the next section and Appendix C.2.1.
5.2.2 Theoretical Analysis

Consider a triplet (7*, (T, 71), (¢, 7)), where the segments (™ and (™ are
generated by policies 7 and 7, respectively. The (unknown) optimal policy 7*
serves as the basis for determining the underlying reward and ensuring consistent
preferences. During the learning process, we assume that each segment is labeled
by its behavior policy. Under this setup, the policy-labeled preference model is

expressed as:
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PE) = (S v (s) - v )] [ e - @ (sa)]).

t>0

Ag(m) By (m*mt 7 )

This expression is decomposed into two components: (i) A;(7*), which de-
pends solely on Q™ (note that V™ (s) = Equr<[Q7 (s,a)] + aH™ (-]5)), and (ii)
By(r*, 7", 7™), which involves Q™ and Q™ .

The main theoretical challenge in performing a direct policy update is
expressing the soft optimal @Q-function and soft @-function of a given policy
7 in closed-form with respect to the optimal policy 7*. Before proceeding, we
introduce the concept of equivalence classes within the MaxEnt framework to

analyze the reward structures that make a given policy optimal.

Definition 5.2.1. The set of reward functions where 7* is a-optimal is defined
as (a, *)-equivalence class of reward function, denoted by R r+. For every
policy 7, the set of Q™-function generated by any reward function 7o -+ € Ra =
is defined as the («, 7*)-equivalence class of QT -function, denoted by O

Definition 5.2.1 indicates that a reward function class R or a Q™-function
class Q™ can be partitioned based on the a-optimal policy 7*. For notational
simplicity, we denote the ground truth reward function corresponding to the
a-optimal policy 7 as r, and the Q7-function induced by r, as Q7, simplifying
the subscript to *.

Lemma 5.2.2 (Structural Condition for a-optimality). A reward function
and a soft optimal Q-function where 7*(-|s) is a-optimal have a one-to-one
correspondence with a state-dependent function 5 :S — R, defined as follows:

Raae = {r«(s,a) = alogn”(als) + B(s) — vEp[B(s')]}
Qi re ={QF (s,0) = alogm*(als) + B(s)}

foralls €S and a € A.

Lemma 5.2.2 demonstrates that the (o, 7*)-equivalence class of soft optimal

@Q-functions can be uniquely expressed as the sum of a log-probability term,
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alog m*(als), and a state-dependent function, §(s). This result improves upon
the prior lemma of Rafailov et al. [77], which established only a surjection from
reward functions to optimal policies. By contrast, we ensure a bijection, rigorously
defining the equivalence class of reward functions. Furthermore, Lemma 5.2.2
refines the concept of policy invariance introduced by Gleave et al. [40], Ng
et al. [69] by specifying that the action-dependent term must be alog 7*(als) to

guarantee 7* is the a-optimal policy.

Lemma 5.2.3 (Unique Fixed Point of Soft Bellman m-operator). Let m* be
a-optimal. For a given policy m and Q-function Q7 € Q™ for any (s,a) € S x A,
define the Bellman m-operator TT : Q™ — Q™ where

T7Q(5.a) = QT (s,0) = 7Bz [a (™ (1) = H"(s"))
B QI (5, 0')] — E<[QA (5, ).

Then, T,F has a unique fized point QT .

Lemma 5.2.3 describes an operator that links the soft @-function of a
given policy 7 to the optimal soft Q-function QT , identifying QT as its unique
fixed point. Notably, this relationship is established without requiring explicit
knowledge of the reward function r,. From the novel design of the soft Bellman

m-operator, we now derive the following important theorem.

Theorem 5.2.4 (Policy Deviation Theorem). If a policy ©* is a-optimal, then
for any policy «,

QT (s,a) = Qi(s,a) = aDg(r||7*; s,a)
where the sequential forward KL divergence is defined as
Drcr(r|[';s,a) == Erupy, | 4" Dicr(m(:|s)||7 (-|s1))
>0

Here, PY , is the distribution of trajectories T = (so, a0, - ,S1,a,--+) generated

by policy 7 and the transition P, starting at (so,ag) = (s,a).
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Theorem 3.4 establishes that the difference between the soft Q-function of
any policy m and the optimal soft ()-function is constant and can be expressed
as the sequential forward KL divergence. Intuitively, Dy (||7*; s, a) represents
the discounted sum of the forward KL divergence between m and 7* over the
states visited during a rollout starting from (s, a). This property is particularly
valuable, as it quantifies the performance gap using only 7 and 7*.

While related results were proposed by Shaikh et al. [87] and Zeng et al.
[110], their proofs were restricted to contextual bandits and token-level MDPs
with deterministic transitions, respectively. Moreover, their formulation depends
on a KL-regularized objective that explicitly incorporates a reference policy.
In contrast, Theorem 3.4, formulated within the MaxEnt framework, does not
require a reference policy to be well-defined, making it more broadly applicable.

Corollary 5.2.5. For a given (a,7*) and a policy w, Regr«(-,+) is uniquely
determined regardless of 5(s).

Since regret is invariant to transformations of 5(s), it does not require
additional variance reduction techniques [85] to ensure stable learning. As noted
in Lemma 5.2.2, any policy-invariant transformation can be expressed as a
combination of a state-dependent function (s) and a scaled log-likelihood term
alogm(als), where « represents the temperature parameter in the MaxEnt
framework. Specifically, for any transformation of the reward function that

preserves the optimal policy, we can rewrite the modified reward as:

r(s,a) = alogm(als) + B(s).

This formulation extends the classical reward shaping result of Ng et al.
[69] by explicitly incorporating the policy-dependent term «logm(als), which

accounts for transformations in the likelihood space. This insight allows us to
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generalize policy-invariant transformations and directly integrate them into
preference-based learning objectives.
Using this representation, we can reformulate the sequential DPO objective

with a policy-invariant transformation as follows:

Lppos)(my; D)

=—-Ep [loga(z { log
>0

~{1og PP gy 9B, e B 6

Wref(at_ | St_ )

The existence of multiple objectives that preserve the optimal policy through

my(aq |sy) . /
I —~E,_,
Wref(aj|8t+) +B(s() = stNP(-|st+,aj)[5(5t)]}

reward shaping has been explored in previous work, particularly in the variance
reduction schemes of policy gradient methods. Schulman et al. [85] introduced
the generalized advantage estimate (GAE) as a method to reduce the variance
of policy gradient estimates, effectively selecting an appropriate 3(s) to improve
stability and efficiency in learning. Similarly, in Equation 5.4, the standard DPO
framework assumes 3(s) = 0, but optimizing 3(s) to minimize the variance of
gradient estimates could lead to more stable training.

In contrast, as shown in Equation C.2.1 on Appendix C.2.1, regret-based
formulations naturally eliminate $(s) by definition, avoiding the challenges
associated with policy-invariant transformations. This property ensures that
regret serves as a unique and well-defined objective function, making it inherently
robust without requiring explicit variance reduction techniques.

Corollary 5.2.6. Maximizing the MaxEnt objective with negative regret as the
reward is equivalent to minimizing the sequential forward KL divergence between
the learned policy and the behavior policy for each preferred state-action pair in
the dataset, i.e.,

arg max (]E<+ND [—Regg (sT,a™) — alogmy (a+|s+)])
Ty

= argrgrlin <E§+~D[DKL(7T+H7T¢§S+,a+)]>- (5.5)
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Corollary 5.2.6 implies that regret-based RLHF operates by aggregating
behavior policies from preferred segments, aligning the learned policy toward
preferred actions. Notably, if all preferred segments are assumed to be generated
by the optimal policy, the formulation reduces to the standard CPL objective,

highlighting its connection to prior methods.

Proof. Consider a dataset D and a set of sampled preferred segments {Q:“ fil
which are generated by behavior policy 7ri+ respectively. To avoid notation
ambiguity, we emphasize that the subscript ¢ in this proof denotes the index
of each individual samples. When defining the reward function as the negative
regret, the optimal policy of Maxent objective Wﬁeg can be reformulated as:

7-‘-Reg
N
1 +
= argn;lrix (N Z [— Reg;:ﬂ (Sj',aj_) - alogmp(aﬂsf)})
i=1
1 ol 7rj + o+ T et
- s (4 35 0 ) <1520 - st
i=1
N
1
= arg max (N Z [alogm,(aﬂsi ) — aDgr(r||my; s af) — ozlogm,(aﬂsj)b
i i=1
N
1 _
_ (S D - + . F )
argn;}pn(N; Ko(m; ||y s, a))

Notably, the minimum is achieved if and only if my(a; |s]) = m(a]|s;") for
each i € [N]. This formulation demonstrates that maximizing the MaxEnt
objective with a regret-based reward is fundamentally equivalent to minimizing

the sequential forward KL divergence for each segment.

Discussion. The regret-based DPO framework can be reinterpreted as a
process that aggregates the behavior policies underlying the given dataset,

aligning the learned policy to preferred actions by reducing the sequential
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forward KL divergence. If, as assumed in CPL, the behavior policies of all
preferred segments in dataset D correspond to the optimal policy 7* (or can be
constructed as such), then PPL is guaranteed to converge to the optimal policy.

However, in practical RLHF settings, such an assumption rarely holds. Unlike
standard reinforcement learning, where an agent maximizes a predefined reward
function, RLHF optimizes for policy alignment rather than absolute optimality.
In the DPO framework, the reward function is implicitly constructed to make
the aligned policy the optimal one within the given preference dataset. As a
result, the optimal policy under the learned reward function is already the policy
obtained through alignment, making it unnecessary to perform an additional
RL algorithm to reach the optimal policy.

To achieve further improvements, it is crucial to expand the dataset by
rolling out new policies and incorporating additional preference data. This
process enhances dataset coverage while enabling the learned reward function to
extrapolate more effectively. Without such iterative expansion, RLHF remains
constrained by the limitations of the static dataset, preventing meaningful policy

improvements beyond the scope of the initially collected preferences.

5.2.3 Practical Algorithm and Implementation Details

In this section, we present PPL, a practical algorithm that leverages the policy
label to solve the likelihood mismatch. Our setting follows the classical DPO, but
with the difference that we manage preference queries by labeling the behavior

policy for each trajectory in the dataset.
Pseudo-labels. In general RL settings, the behavior policy that generated

a trajectory is typically known or accessible, making policy labeling relatively

inexpensive. However, in offline datasets, the behavior policy is often unknown.
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Algorithm 4 Policy-labeled Preference Learning (PPL)
Input: number of queries N, trajectory dataset &, minibatch size
D

1: Initialize policy parameters v

2: forn=1,---,N do

3:  Sample (,{' ~ &

4:  if policy label m(a|s;), w(aj]s;) unknown then
5: 7(+|st) = da;, T(-[57) ¢ Dy

6: end if

7. Label the behavior policy p = (7, ')

8:  Instruct the preference label y = (y(0), y(1))

9:  Store preference D <+ D U{(¢, (', y,p)}

10: end for

// Create Policy-labeled Preference Queries
11: fort=1to T do
12:  Sample minibatch {(¢,{’,y,p)a}tl, ~ D
13: P < arg minw Lpp1, (71'1/,; D)
14: end for
// Policy Learning

To address this, we assign pseudo-labels as an alternative, assuming each segment

was generated by a deterministic policy that executed the observed actions.

Contrastive KL Regularization. As previously discussed, the regret is
decomposed into two components. In particular, the sequential KL divergence
plays a pivotal role in aligning the learned policy with the preferred policy while

diverging from the less preferred policy:

xt T — —
- Z Regww (S;ra a;_) - Regﬂ'w (St y A )

t>0
ot
TTplay |S — _
— 0 (tog P D) (o i) + Dicn (el )-
t>0 Trl/)(at |St )

contrastive KL regularization R(my; mt,m7)

We call this term as contrastive KL regularization, which requires performing

rollouts for each (s¢,a;) with respect to 7% or #—. This regularization term
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Table 5.2: Success rates of all methods across six tasks on the MetaWorld
benchmark on different datasets. Each score is reported with the maximum
average performance across four seeds over 200 episode evaluation window.

Bin Picking Button Press Door Open  Drawer Open Plate Slide  Sweep Into

SFT 39.7 £19.2 715+ 3.3 48.0 £ 15.6 56.2 £ 1.8 648 £0.8 70.0£6.5

Homogeneous P-IQL  62.0 + 4.4 723 £ 1.0 477+ 5.1 58.0 £ 5.7 70.5 £ 6.1 658+ 1.3
Dense CPL 22.7+ 5.5 643+ 14 29.0 + 4.3 54.0 £4.3 65.5+3.1 69.8 £33
PPL 83.5 £ 4.4 79.8 + 4.8 39.3 £2.0 69.2 £ 5.5 64.7+£20 72.8 + 4.8

SFT 33.5£54 67.4 £ 1.5 31.3+£21 54.9 £ 2.7 67.1+£3.7 T783+£25

Homogenous  P-IQL  72.4 + 6.6 74.5 £ 0.0 58.5 £ 1.4 514+ 4.6 76.3 £ 1.6 79.0 £ 2.6
Sparse CPL 26.5 + 1.0 63.7 £ 1.3 28.5 + 5.8 50.1 £4.5 65.1 £28 729 £6.1
PPL 87.2 £ 3.5 87.3 £ 2.8 493 £6.5 68.5 +£ 5.3 640+64 739 +£35

SFT 18.5 + 23.8 63.7 £ 12.2 26.0 + 12,5 32.0 £5.7 628 +£1.6 53.0£9.1
Heterogeneous P-IQL  51.2 + 5.3 62.5 £ 4.9 32.0 £ 3.5 41.8 £3.8 67.0 £ 3.0 59.3 &£ 3.7

Dense CPL 1.2 £08 49.7 £ 3.0 173 £ 2.5 26.0 £ 2.2 59.2 £ 7.7 51.2+30
PPL 59.7 + 18.6 73.8 + 3.3 25.8 £ 2.0 58.5 £3.8 69.8+ 23 573+£86

SFT 122 +£ 1.0 63.7 £ 4.7 17.8 £ 0.8 38.7 £ 3.0 70.7 £ 3.8 60.7 £25

Heterogeneous P-IQL  48.0 + 5.6 71.0 + 6.6 44.1 £+ 3.2 475 £ 3.0 72.0 £ 4.0 64.3 £1.0
Sparse CPL 18.0 £ 6.1 50.8 & 0.8 18.5 £ 3.0 321 +£1.6 67.3 £55 555 £33

PPL 83.8 £ 3.8 83.5 1.8 343+£76 60.8 +£ 7.3 71.2+19 633+42

ensures that the learned policy 7y, aligns more closely with the preferred policy
7T while pushing away from the less preferred policy 7.

In practice, implementing contrastive KL regularization can result in a
computational overhead, as it requires multiple rollouts with each state-action
pair as the initial point at every timestep until the terminal is reached. This
approach can also increase memory usage as it requires additional timesteps
outside of the sampled segment. To address these technical challenges, we
replace the discounted sum with an L-horizon undiscounted sum. We normalize
the contrastive KL regularization to balance their scale, and the process is
further simplified by reusing segments (™, (™ as a single rollout of policy =%, 7,

respectively.

L + + _, - _
Z{—log 7T+(at+l|5t+l) 1o T (agylsi)

1
R(my; nt,m7 )~ = e S——
L5 Ty (@ lsiyr) Ty (aglsiy)

Here, L corresponds to the step of look-ahead during rollouts. When L = 0,

the framework fully reduces to CPL, which does not account rollout for sequential
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planning. Another interesting observation is that if we assume the segments in
the offline dataset were generated by the reference policy (i.e., 7, 7~ = m.f), the
framework recovers the original DPO formulation, i.e., forward KL-constrained

RLHF implicitly minimizes regret.

5.3 Experiments

In our experiments, we aim to answer the following questions: (1) Can PPL
effectively learn in offline settings composed of heterogeneous data generated by
diverse policies? (2) Does incorporating policy labels improve learning perfor-
mance? (3) Can PPL be effectively applied to online RLHF algorithm? A full

report for each question is provided in the Appendix C.5, C.6 and C.7.

5.3.1 Experimental Setup

For a fair comparison, we first evaluate the performance of PPL on six robotic
manipulation tasks in MetaWorld [107], using the same rollout data provided
by Hejna et al. [44]. Results from the reproducibility check are included in
Appendix C.4.3. To evaluate performance on offline datasets generated from
diverse policies, we aimed to follow CPL’s preference dataset generation procedure.
However, there are two key differences in our implementation of the critic. First,
we utilize raw rollout data without any trajectory truncation. Second, whereas
CPL applies a specific technique to reduce TD-error by re-training the critic
with all rollout data added to the replay buffer, we generated preference labels
without such retraining. As a result, our labels may be noisier than those in
CPL. Nevertheless, to ensure a fair comparison, all algorithms were trained using

the same set of labels. For further details, please see Appendix E.4.
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Baselines. We consider CPL as our primary baseline, where the key distinction
between PPL and CPL lies in whether the label of the behavior policy is utilized.
For additional baselines, we include supervised fine-tuning (SFT) and Preference-
based Implicit @-Learning (P-IQL). Specifically, SFT first trains a policy via
behavior cloning on all preferred segments in the preference dataset. P-IQL [43]
is a reward-based RLHF algorithm that first learns a reward function from
preference data and then derives an optimal policy using the Implicit Q-Learning
(IQL) algorithm [56]. Notably, P-IQL is expected to achieve higher performance,
as it not only learns a policy but also simultaneously optimizes a reward function,

@-function, and value function.

Implementation Details. To generate preference queries without human
supervision, we pretrain an SAC model as an oracle that achieves a 100% success
rate. Using this pretrained model as a critic, we uniformly sampled segments of
length 64 and assigned labels based on estimated regret. To evaluate performance
in heterogeneous datasets, we further construct an additional offline dataset by
rolling out suboptimal policies with 20% and 50% success rates and combining
them. For preference datasets, we conduct experiments under two settings:
Dense, where comparisons are made between all segment pairs, and Sparse,
where only one comparison is made per segment.

5.3.2 Can PPL be effectively trained on both homogeneous and

heterogeneous offline dataset?

In the previous works, the evaluation of offline datasets has been conducted
under homogeneous conditions. However, in practice, offline datasets are more
commonly generated by a multiple different policies. Thus, we investigate the
following question:

How would PPL and the baselines perform if the offline dataset were hetero-
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Figure 5.4: Distribution of returns in homogeneous vs heterogeneous offline
dataset in Button-Press-v2.

geneous?

To investigate this, we examine the distribution of segment returns for both
types of datasets, as shown in Figure 5.4. Compared to the homogeneous dataset,
the heterogeneous dataset includes rollout data from a policy with a 20% success

rate, leading to a higher density of lower-return segments.

In Table 5.2, we report the impact of diverse behavior policies on performance.
PPL consistently outperforms other methods across various dataset conditions
in the MetaWorld benchmark, particularly in challenging scenarios with pref-
erence sparsity and policy diversity. Interestingly, unlike baseline algorithms,
PPL achieves higher performance in Sparse settings compared to Dense settings.
This implies that PPL benefits more from datasets with broader state-action
coverage rather than relying on dense pairwise comparisons across all segments.
Furthermore, PPL exhibits greater robustness in heterogeneous datasets, outper-
forming or matching P-IQL despite utilizing only about 6.3% of its parameters.
This highlights PPL as an efficient algorithm that maintains strong performance

while incurring lower computational costs.
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Figure 5.5: Ablation on deterministic pseudo-labeling. We compare the average
performance of PPL and PPL-deterministic across six environments in MetaWorld.
The dashed line indicates the point where BC pretraining stops.

One possible explanation for CPL’s lower performance on our dataset is the
absence of the retraining technique to reduce TD-error—a method uniquely
applied within CPL and not commonly adopted in standard practice. However,
since all algorithms were trained using the same labels, we attribute this perfor-
mance gap primarily to CPL’s sensitivity to label noise. This sensitivity appears
to arise from an implicit assumption within CPL that all training trajectories
are generated by an optimal policy.

5.3.3 Does incorporating policy labels improve learning perfor-

mance?

In this experiment, we examine how the presence and accuracy of policy labels
affect performance. Since the offline dataset are fixed and behavior policies are
typically unknown, we ablate a pseudo-label setting, assuming each segment
was executed deterministically based on the observed actions. Specifically, we
introduce PPL-deterministic, where the behavior policy for each segment is
assumed to be fully deterministic (See Lines 4-5 of Algorithm 4). We then
compare its performance with PPL.

As shown in Figure 5.5, comparing PPL with CPL reveals that when behavior
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Figure 5.6: Online learning curves across five MetaWorld tasks, comparing PPL
and PEBBLE.

policy information is not incorporated into learning, distinguishing environmental
stochasticity from behavior policy suboptimality becomes more difficult, resulting
in a significant performance gap. As an alternative, using deterministic pseudo-
labels for training on offline data without policy labels proves to be a viable
approach in homogeneous datasets, causing only a slight performance drop.
However, in heterogeneous datasets, their effectiveness decreases, leading to a
substantial performance gap. This result suggests that as the dataset becomes
more diverse in behavior policies, incorporating policy labels into learning

becomes increasingly important.

5.3.4 Can PPL be effectively applied to an online RLHF algo-
rithm?

In the online setting, rollouts are directly executed, providing explicit access to

policy labels. Leveraging this advantage, we conducted experiments to evaluate

whether PPL can effectively serve as an online DPO algorithm. The experiments

were conducted from scratch, without any pretraining. Unlike the offline setting,

we did not apply the asymmetric regularizer in Eq. 5.1, as out-of-distribution
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issues were mitigated by the iterative data collection process. We used PEBBLE
[58] as an oracle because it employs a learned policy trained with unsupervised
pretraining, which accelerates learning. Further implementation details are
provided in Appendix C.4.5.

Figure 5.6 illustrates the average success rates across five MetaWorld tasks.
Notably, despite learning from scratch, the online version of PPL achieves per-
formance comparable to PEBBLE, which leverages unsupervised pretraining.
Furthermore, since PPL does not require learning a reward model or a critic,
it uses only 8.8% of the parameters compared to PEBBLE, yet still achieves
comparable performance. This demonstrates that PPL can serve as a highly

efficient online RLHF algorithm.
5.4 Summary

In this work, we introduced PPL, a novel DPO framework that incorporates infor-
mation from the behavior policy through regret-based modeling. We highlighted
the issue of likelihood mismatch and addressed it by proposing contrastive
KL regularization. Furthermore, we theoretically established that minimizing
regret is fundamentally equivalent to optimizing the forward KL-constrained
RLHF problem. Empirically, PPL demonstrated strong performance across offline
datasets containing rollouts from diverse policies, showcasing its robustness to
dataset variations. In online setting, policy labels can be obtained more easily
than in the offline case, and PPL effectively learned as an online DPO algorithm.
However, we observed that online RLHF method is quite sensitive to the sam-
pling of queries from preference data, suggesting that a more refined analysis is

needed for future research.
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Chapter 6

Conclusion

This dissertation advances the study of sequential decision-making under un-
certain human feedback by integrating distributional reinforcement learning
with a regret-based, human-aligned framework. To overcome the limitations of
conventional reinforcement learning, which relies on expectation-based updates
and explicitly defined rewards, we propose a unified approach that combines
two complementary perspectives.

From the distributional perspective, the proposed framework models un-
certainty and variability in returns at the level of full distributions, capturing
aspects of risk and diversity that expectation-based methods overlook. From the
human feedback perspective, it introduces a regret-based modeling paradigm
that interprets uncertain and heterogeneous human preferences as structured
feedback. By doing so, the agent can better understand human intent, reduce
bias in reward estimation, and learn stable, optimal policies aligned with human
objectives.

Building upon this foundation, we further develop a principled regret min-
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imization framework that provides theoretical guarantees on policy learning
efficiency. Through this formulation, regret quantifies the discrepancy between
learned and optimal behaviors, serving as a unifying measure that connects
human-aligned evaluation with algorithmic efficiency. Empirical results across
diverse and high-dimensional environments demonstrate that the proposed
algorithms achieve robust performance and faster convergence with fewer envi-
ronment interactions, validating both their theoretical soundness and practical

effectiveness.

6.1 Future Work

The findings of this dissertation offer valuable theoretical and practical insights
for advancing reinforcement learning from human feedback (RLHF'). Despite
these contributions, several promising directions remain for future exploration.

First, while this work primarily considers feedback from a single annota-
tor, future research could investigate methods for aggregating and reconciling
heterogeneous feedback from multiple users. Such extensions are critical for
developing scalable and socially aligned agents that generalize across diverse
human populations.

Second, the current framework assumes that the agent’s actions do not
dynamically influence the user’s feedback model. A natural next step is to
explore interactive settings where human preferences evolve in response to
the agent’s behavior, requiring adaptive algorithms that jointly model human
learning and agent learning dynamics.

Finally, future research may extend this framework beyond pairwise pref-
erence feedback to encompass richer modalities of human supervision, such
as demonstrations, natural-language instructions, or process-level evaluations.

Integrating these feedback forms will enable the development of more versatile,
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interpretable, and trustworthy agents—furthering the broader goal of creating

human-centered artificial intelligence.
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Appendix A

Appendix of Chapter 3

A.1 Main Proof

A.1.1 Technical Lemma

Before proving our theoretical results, we present two inequalities for supremum

to clear the description.

L. sup|f(x) + g(x)| < sup|f(x)| + sup|g(z)]
zeX reX zeX

2. |supf(z) — supg(2’)| < sup [f(z)— g(2')]
rzeX r’eX rx'e€X

Proof of 1. Since |f(x) + g(x)| < |f(x)| + |g(z)| holds for all z € X,

sup | f(z) + g(z)| < sup(|f(z)| + [g(2)])

zeX zeX
< sup | f(x)] + sup [g(x)|
zeX zeX
|
Proof of 2. Since ‘HaH — HbH’ < |la —b]| for any norm || - || and for a large enough
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sup |f(z) — g(z')| = sup|f(z) — g(z)|

z,x’'eX reX
= supl(f(z) + M) — (g(x) + M)
> | sup(f(z) + M) — sup(g(z) + M)|
zeX zeX

sup f(x) — sup g(w')‘
rxeX r'eX

A.1.2 Proof of Theorem A.1.3

Theorem A.1.3. If & converges to 1 in probability on (2, then E7 ¢, converges
to ET uniformly on Z for all s € S and a € A.

Proof. Recall that Z = {Z S x A= PR)| E[|Z(s,a)]] < VmaX,V(s,a)}.
Then for any Z € Z and £ € =,

Rmax Rmax
1—y 1-9
which implies PDBOO is closed in Z, i.e. T¢Z € Z for all { € Z. Hence, for any
sequence &, Z(™ = Te¢,Z € Z for any n > 0.

Since & converges to 1 in probability on €2, there exists T such that for any
€,0>0andt>T,

p(@) = ({we s w112 ¢}) <5

weN

E(IT¢Z]] < Rimax +7

= Vmax-

For any Z € Z, s € S,a € A, and t > T, by using Hélder’s inequality,
sup sup |E¢,[Z(s,a)] — E[Z(s,a)]]
Z€eZ s,a

—supsup | [ (1= &) Z(s,0.w)P(aw)
ZeZ sa we

= sup sup / (1 =& (w))Z(s,a,w)P(dw)
ZeZ sa weN

b ) 2(s,a,0)P(dw)|
wGQ\Qt
<P(Q) sup [§x(w) — 1] Vinax + P(Q\Q) sup  [(w) — 1] Vinax
wEN we\Qy
< 5|B§ - 1|Vmax + €Vmax
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which implies that E¢, converges to E uniformly on Z for all s, a.
By using A.1.1, we can get the desired result.

sup sup |E[T¢ Z(s,a)] —E[T Z(s,a)]|

zZeZ S,a
< sup sup |E[TftZ(5>a)] _Eft [Tth(s,a)]\
zZeZ s,a
+ sup sup |E¢,[T¢, Z(s,a)] — E[T Z(s, a)|
ZeZ s,a

< (5‘35 - 1’V;nax + 6vaa,x)
sup Ee, [Z(s',a’)] — sup E[Z(s’,a”)]H

CL”

+ vysup sup Ey [
ZeZ s,a

< (5‘35 - 1’V.max + 6vaax)
Eft [Z(slv a/)] - E[Z(Sl7 a/)] ‘

+ ysup sup
zZeZ s'a

S ((5‘35 - llvmax + EVmax) + 7(5’B£ - 1|Vmax + fvmax)
= (14 7)(8|Be — 1|Vinax + €Vinax)-

A.1.3 Proof of Theorem 3.2.3

Theorem 3.2.3. Let &, be sampled from Un, (Z~1) for every iteration. If
Assumption 3.2.2 holds, then the expectation of any composition of operators
ET¢,., converges, i.e. ET¢  [Z] — E[Z¥]

Moreover, the following bound holds,
sup ‘E[Z(”)(s,a)] - E[Z*(s,a)]‘
S,a

o) k
< Z (2’Yk1Vmax +2 Z Y (Apgoi + Ak+1i>> .

k=n =1

Proof. We denote a(,) = argmax E¢, [Zi(n_l)(s’7 a’)] as the greedy action of
al
Zl-(nfl) under perturbation . Also, we denote sup| - | which is the supremum
s,a

norm over s and a as || - ||sq-
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Before we start from the term HE[Z(’“‘H)] —E[Zz(®)] Hsa, for a given (s, a),

[E[Z04D (s, 0)] — B[Z®)(s5,a)]

200/ 0" (641))] — E[ZED (s, a* (€0)|

S/

< youp ([B1Z 60" 6] - ma B2, o)

+ ’mz}xE[Z(k)(s', )] — max E[Z*V (s, a')]

al

e 2000 — B2 )] )
< ysup [E[Z9(s', o)) - B2V, o)

Y sup [B[2)(s',a*(€11))] — max B2 (s, a')]
i=k—1 % “

< +||B12®) - B[2*-1)

sa

Y [sup ([BZO(, " (€40)] ~Ben 290 0 (611))]
=k—

where we use A.1.1.1 in third and fifth line and A.1.1.2 in sixth line.
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Taking a supremum over s and a, then for all k£ > 0,

HE[Z(’““)} _E[z®)

sa

k
<~ HIE[Z(’“)] ~EZ0 V]| 42 Y AAm

i=k—1

k-1 k
2N .
Sa+2 Z Y A1 + 2 Z VA1
i=k—2 i=k—1

S

< 72 HE[Z(k_l)] - E[Z(k—Q)]

<" |E1Z®) - E(Z]

k

L 12 D AV (Apgami + Apyr)
i=1

k

< 29" Vimax +2 ) 7 (Akya—i + A1)
=1

Since Y 20, v = ﬁ < oo and > 2 A; < 0o by assumption, we have

k
Z ’yZAk_H_Z' —0
i=1

which is resulted from the convergence of Cauchy product of two sequences {7°}

and {A;}. Hence, {E[Z()]} is a Cauchy sequence and therefore converges for
every Z € Z.

Let E[Z*] be the limit point of the sequence {E[Z(™]}. Then,
|E12*] - ELZ™)

— lim HE[Z("“)] AQ)

sa l—00

<y |ELZ0+0) - B[z 0]
k=n

sa

sa

o0 k
=3 (27’“Vmax +23 7 (Aproi + Ay +1—i)).
k=n =1

A.1.4 Proof of Theorem 3.2.4

Theorem 3.2.4. If {A,,} follows the assumption in Theorem 3.2.3, then E[Z*]

is the unique solution of Bellman optimality equation.
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Proof. The proof follows by linearity of expectation. Denote the Q-value based
operator as 7. Note that A, converges to 0 with regularity of Z implies that
&, converges to 1 in probability on §2, i.e.,

lim sup / Z™ (w; s,a)(1 — & (w))P(dw)| =0
n—oo s,a weN

:>nan;OP({w €Nl -¢&(w) >€})=0

By Theorem A.1.3, for a given € > 0, there exists a constant K = max(Kj, K3)
such that for every k > Kj,

sup || T, E[Z] — TE[Z]sa < 5-
ZeZ

Since T is continuous, for every k > Ko,
ITE[Z®)] - TE[Z"]||s0 < 5
Thus, it holds that

IT e, E[ZW)] — TE[Z] ) sa
<N T e EIZ0] = TE[ZW]|l50 + | TE[Z®)] — TE[Z*]|50

s;gnfgﬂﬁwy—waww+wawwn—waﬂma
€L €
=55 T¢

Therefore, we have
E[Z*] = lim E[Z®] = lim E[Zz*+D)]
k—o0 k—o0

: k . - k - *
= lim E[T¢,,, 2% = Jim T E[ZW) = TE[Z7]

Since the standard Bellman optimality operator has a unique solution, we derived
the desired result. |
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A.2 Implementation details

Except for each own hyperparameter, our algorithms and DLTV shares the same
hyperparameter and network architecture with QR-DQN [31] for a fair comparison.
Also, we set up p-DLTV by only multiplying a gaussian noise N'(0,1) to the
coefficient of DLTV. We do not combine any additional improvements of
Rainbow such as double Q-learning, dueling network, prioritized replay, and
n-step update. Experiments on LunarLander-v2 and Atari games were performed
with 3 random seeds. The training process is 0-2% slower than QR-DQN due to

the sampling £ and reweighting procedures.
A.2.1 Hyperparameter Setting

We report the hyperparameters for each environments we used in our experi-

ments.
Table A.1: Table of hyperparameter setting
Hyperparameters ‘ N-Chain LunarLander Atari Games
Batch size 64 128 32
Number of quantiles 200 170 200
n—step updates 1
Network optimizer Adam
B Grid search[0.05, 0.1, 0.5, 1] x1V
K 1
Memory size le6 led le6
Learning rate 5e-5 1.5e-3 5e-5
~ 0.9 0.99 0.99
Update interval 1 1 4
Target update interval 25 1 led
Start steps 5e2 led 5ed
€ (train) LinearAnnealer(l — le-2)
€ (test) le-3 le-3 le-3
€ decay steps 2.5e3 leb 2.5eb
Coefficient ¢ Grid search[1e0, 5e0, lel, 5el, 1e2, 5e2, 1e3, 5e3]
Ay 5e2 5ed le6
Number of seeds 10 3 3
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A.3 Raw scores across 55 Atari games

Table A.2: Raw scores across all 55 games, starting with 30 no-op actions.
We report the best scores for DQN, QR-DQN, IQN and Rainbow on 50M frames,
averaged by 5 seeds. Reference values were provided by DQN_Zoo framework
[76]. Bold are wins against DQN, QR-DQN and IQN, and *asterisk are wins over
Rainbow.

GAMES RANDOM | HUMAN | DQN(50M) | QR-DQN(50M) | IQN(50M) | RAINBOW (50M) | PQR(50M)
Alien 227.8 7127.7 1541.5 1645.7 1769.2 4356.9 2455.8
Amidar 5.8 1719.5 324.2 683.4 799.2 2549.2 938.4
Assault 222.4 742.0 2387.8 11684.2 15152.4 9737.0 10759.2
Asterix 210.0 8503.3 5249.5 18373.4 32598.2 33378.6 10490.5
Asteroids 719.1 47388.7 1106.3 1503.9 1972.6 1825.4 1662.0
Atlantis 12850.0 29028.1 283392.2 937275.0 865360.0 941740.0 897640.0
BankHeist 14.2 753.1 389.0 1223.9 1266.8 1081.7 1038.8
BattleZone 2360.0 37187.5 19092.4 26325.0 30253.9 35467.1 28470.5
BeamRider 363.9 16926.5 7133.1 12912.0 19251.4 15421.9 10224.9
Berzerk 123.7 2630.4 577.4 826.5 918.9 2061.6 *137873.1
Bowling 23.1 160.7 34.4 454 41.5 54.7 *86.9
Boxing 0.1 12.1 87.2 99.6 99.2 99.8 97.1
Breakout 1.7 30.5 316.8 426.5 468.0 335.3 380.3
Centipede 2090.9 12017.0 4935.7 7124.0 7008.3 5691.4 *7291.2
ChopperCommand 811.0 7387.8 974.2 1187.8 1549.0 5525.1 1300.0
CrazyClimber 10780.5 35829.4 96939.0 93499.1 127156.5 160757.7 84390.9
DemonAttack 152.1 1971.0 8325.6 106401.8 110773.1 85776.5 73794.0
DoubleDunk -18.6 -16.4 -15.7 -10.5 -12.1 -0.3 -7.5
Enduro 0.0 860.5 750.6 2105.7 2280.6 2318.3 *2341.2
FishingDerby -91.7 -38.7 8.2 25.7 234 35.5 31.7
Freeway 0.0 29.6 24.4 33.3 33.7 34.0 34.0
Frostbite 65.2 4334.7 408.2 3859.2 5650.8 9672.6 4148.2
Gopher 257.6 2412.5 3439.4 6561.9 26768.9 32081.3 *47054.5
Gravitar 173.0 3351.4 180.9 548.1 470.2 2236.8 635.8
Hero 1027.0 30826.4 9948.3 9909.8 12491.1 38017.9 12579.2
IceHockey -11.2 0.9 -11.4 -2.1 -4.2 1.9 -1.4
Jamesbond 29.0 302.8 486.4 1163.8 1058.0 14415.5 2121.8
Kangaroo 52.0 3035.0 6720.7 14558.2 14256.0 14383.6 *14617.1
Krull 1598.0 2665.5 7130.5 9612.5 9616.7 8328.5 *9746.1
KungFuMaster 258.5 22736.3 21330.9 27764.3 39450.1 30506.9 *43258.6
MontezumaRevenge 0.0 4753.3 0.3 0.0 0.2 80.0 0.0
MsPacman 307.3 6951.6 2362.9 2877.5 2737.4 3703.4 2928.9
NameThisGame 2292.3 8049.0 6328.0 11843.3 11582.2 11341.5 10298.2
Phoenix 761.4 7242.6 10153.6 35128.6 29138.9 49138.8 20453.8
Pitfall -229.4 6463.7 -9.5 0.0 0.0 0.0 0.0
Pong -20.7 14.6 18.7 20.9 20.9 21.0 21.0
PrivateEye 24.9 69571.3 266.6 100.0 100.0 160.0 *372.4
Qbert 163.9 13455.0 5567.9 12808.4 15101.8 24484.9 15267.4
Riverraid 1338.5 17118.0 6782.8 9721.9 13555.9 17522.9 11175.3
RoadRunner 11.5 7845.0 29137.5 54276.3 53850.9 52222.6 50854.7
Robotank 2.2 11.9 31.4 54.5 53.8 64.5 60.3
Seaquest 68.4 42054.7 2525.8 7608.2 17085.6 3048.9 *19652.5
Skiing -17098.1 -4336.9 -13930.8 -14589.7 -19191.1 -15232.3 *-9299.3
Solaris 1236.3 12326.7 2031.5 1857.3 1301.5 2522.6 *2640.0
Spacelnvaders 148.0 1668.7 1179.1 1753.2 2906.7 2715.3 1749.4
StarGunner 664.0 10250.0 24532.5 63717.3 78503.4 107177.8 62920.6
Tennis -23.8 -8.3 -0.9 0.0 0.0 0.0 -1.0
TimePilot 3568.0 5229.2 2091.8 6266.8 6379.1 12082.1 6506.4
Tutankham 11.4 167.6 138.7 210.2 204.4 194.3 *231.3
UpNDown 533.4 11693.2 6724.5 27311.3 35797.6 65174.2 36008.1
Venture 0.0 1187.5 53.3 12.5 17.4 1.1 *993.3
VideoPinball 16256.9 17667.9 140528.4 104405.8 341767.5 465636.5 465578.3
WizardOfWor 563.5 4756.5 3459.9 14370.2 10612.1 12056.1 6132.8
YarsRevenge 3092.9 54576.9 16433.7 21641.4 21645.0 67893.3 27674.4
Zaxxon 32.5 9173.3 3244.9 9172.1 8205.2 22045.8 10806.6
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Table A.3: Raw scores across 55 games. We report the best scores for DQN,
QR-DQN, IQN*, and Rainbow on 50M frames, averaged by 5 seeds. Reference
values were provided by Dopamine framework [19]. Bolds are wins against
DQN, QR-DQN, and *asterisk are wins over IQN* and Rainbow. Note that IQN*
and Rainbow implemented in Dopamine framework applied n-step updates with
n = 3 which improves performance.

GAMES RANDOM | HUMAN | DQN(50M) | QR-DQN(50M) | IQN*(50M) | RAINBOW (50M) | PQR(50M)
Alien 227.8 T127.7 1688.1 2754.2 4016.3 2076.2 3173.9
Amidar 5.8 1719.5 888.2 841.6 1642.8 1669.6 *2814.7
Assault 222.4 742.0 1615.9 2233.1 4305.6 2535.9 *8456.5
Asterix 210.0 8503.3 3326.1 3540.1 7038.4 5862.3 *19004.6
Asteroids 719.1 47388.7 828.2 1333.4 1336.3 1345.1 851.8
Atlantis 12850.0 29028.1 388466.7 879022.0 897558.0 870896.0 880303.7
BankHeist, 14.2 753.1 720.2 964.1 1082.8 1104.9 1050.1
BattleZone 2360.0 37187.5 15110.3 25845.6 29959.7 32862.1 *61494.4
BeamRider 343.9 16926.5 4771.3 7143.0 7113.7 6331.9 *12217.6
Berzerk 123.7 2630.4 529.2 603.2 627.3 697.8 *2707.2
Bowling 23.1 160.7 38.5 55.3 33.6 55.0 *174.1
Boxing 0.1 12.1 80.0 96.6 97.8 96.3 96.7
Breakout 1.7 30.5 113.5 40.7 164.4 69.8 48.5
Centipede 2090.9 12017.0 3403.7 3562.5 3746.1 5087.6 *31079.8
ChopperCommand 811.0 7387.8 1615.3 1600.3 6654.1 5982.0 4653.9
CrazyClimber 10780.5 35829.4 111493.8 108493.9 131645.8 135786.1 105526.0
DemonAttack 152.1 1971.0 4396.7 3182.6 7715.5 6346.4 *19530.2
DoubleDunk -18.6 -16.4 -16.7 7.4 20.2 17.4 15.0
Enduro 0.0 860.5 2268.1 2062.5 766.5 2255.6 1765.5
FishingDerby -91.7 -38.7 12.3 48.4 41.9 37.6 46.8
Freeway 0.0 29.6 25.8 33.5 33.5 33.2 33.0
Frostbite 65.2 4334.7 760.2 8022.8 7824.9 5697.2 *8401.5
Gopher 257.6 2412.5 3495.8 3917.1 11192.6 7102.1 *12252.9
Gravitar 173.0 3351.4 250.7 821.3 1083.5 926.2 703.5
Hero 1027.0 30826.4 12316.4 14980.0 18754.0 31254.8 15655.8
IceHockey -11.2 0.9 -6.7 -4.5 0.0 2.3 0.0
Jamesbond 29.0 302.8 500.0 802.3 1118.8 656.7 *1454.9
Kangaroo 52.0 3035.0 6768.2 4727.3 11385.4 13133.1 *13894.0
Krull 1598 2665.5 6181.1 8073.9 8661.7 6292.5 *31927.4
KungFuMaster 258.5 22736.3 20418.8 20988.3 33099.9 26707.0 22040.4
MontezumaRevenge 0.0 4753.3 2.6 300.5 0.7 501.2 0.0
MsPacman 307.3 6951.6 2727.2 3313.9 47144 3406.4 *5426.5
NameThisGame 2292.3 8049.0 5697.3 7307.9 9432.8 9389.5 *9891.3
Phoenix 761.4 7245.6 5833.7 4641.1 5147.2 8272.9 5260
Pitfall -229.4 6463.7 -16.8 -3.4 -0.4 0.0 *0.0
Pong -20.7 14.6 13.2 19.2 19.9 19.4 19.7
PrivateEye 24.9 69571.3 1884.6 680.7 1287.3 4298.8 *12806.1
Qbert 163.9 13455.0 8216.2 17228.0 15045.5 171214 15806.9
Riverraid 1338.5 17118.0 9077.8 13389.4 14868.6 15748.9 14101.3
RoadRunner 11.5 7845.0 39703.1 44619.2 50534.1 51442.4 48339.7
Robotank 2.2 11.9 25.8 53.6 65.9 63.6 48.7
Seaquest 68.4 42054.7 1585.9 4667.9 20081.3 3916.2 5038.1
Skiing -17098.1 -4336.9 -17038.2 -14401.6 -13755.6 -17960.1 *.9021.2
Solaris 1236.3 12326.7 2029.5 2361.7 2234.5 2922.2 *7145.3
Spacelnvaders 148.0 1668.7 1361.1 940.2 3115.0 1908.0 1602.4
StarGunner 664.0 10250.0 1676.5 23593.3 60090.0 39456.3 59404.6
Tennis -23.8 -9.3 -0.1 19.2 3.5 0.0 *15.4
TimePilot 3568.0 5229.2 3200.9 6622.8 9820.6 9324.4 5597.0
Tutankham 11.4 167.6 138.8 209.9 250.4 252.2 147.3
UpNDown 533.4 11693.2 10405.6 29890.1 44327.6 18790.7 32155.5
Venture 0.0 1187.5 50.8 1099.6 1134.5 1488.9 1000.0
VideoPinball 16256.9 17667.9 216042.7 250650.0 486111.5 536364.4 460860.9
WizardOfWor 563.5 4756.5 2664.9 2841.8 6791.4 7562.7 5738.2
YarsRevenge 3092.9 54576.9 20375.7 66055.9 57960.3 31864.4 *67545.8
Zaxxon 32.5 9173.3 1928.6 8177.2 12048.6 14117.5 9531.8
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Table A.4: Raw scores across all 49 games, starting with 30 no-op actions. We
report the best scores for QR-DQN_zoo [76], QR-DQN_Zhang [111](implemented by
QUOTA to evaluate the relative improvement) for a fair comparison and QUOTA
[111], DLTV [64] on 40M frames, averaged by 3 seeds. Bold are wins against
QUOTA and DLTV.

Games Random | Human | QR-DQN_zoo(40M) | QR-DQN_Zhang(40M) | QUOTA (40M) | DLTV(40M) | PQR(40M)

Alien 227.8 7127.7 1645.7 1760.0 1821.9 2280.9 2406.9
Amidar 5.8 1719.5 552.9 567.9 571.4 1042.7 644.1
Assault, 222.4 742 9880.4 3308.7 3511.1 5896.2 10759.2
Asterix 210 8503.3 13157.2 6176.0 6112.1 6336.6 8431.0
Asteroids 719.1 | 47388.7 1503.9 1305.3 1497.6 1268.7 1416.00
Atlantis 12850 | 29028.1 750190.1 978385.3 965193.0 845324.9 897640.0
BankHeist 14.2 753.1 1146.1 644.7 735.2 1183.7 1038.8
BattleZone 2360 | 37187.5 17788.4 22725.0 25321.6 23315.8 28470.5
BeamRider 363.9 | 16926.5 10684.2 5007.8 5522.6 6490.1 10224.9
Bowling 23.1 160.7 44.3 27.6 34.0 29.8 86.9
Boxing 0.1 12.1 98.2 95.0 96.1 112.8 97.1
Breakout 1.7 30.5 401.5 322.1 316.7 260.9 357.7
Centipede 2090.9 | 12017.0 6633.0 4330.3 3537.9 4676.7 6803.6
ChopperCommand 811.0 7387.8 1133.1 3421.1 3793.0 2586.3 1500.0
CrazyClimber 10780.5 | 35829.4 93499.1 107371.6 113051.7 92769.1 83900.0
DemonAttack 152.1 1971.0 98063.6 80026.6 61005.1 146928.9 73794.0
DoubleDunk -18.6 -16.4 -10.5 -21.6 -21.5 -23.3 -10.5
Enduro 0.0 860.5 2105.7 1220.0 1162.3 5665.9 2252.8
FishingDerby -91.7 -38.7 25.7 -9.6 -59.0 -8.2 31.7
Freeway 0.0 29.6 30.9 30.6 31.0 34.0 34.0
Frostbite 65.2 4334.7 3822.7 2046.3 2208.5 3867.6 4051.2
Gopher 257.6 24125 4191.2 9443.8 6824.3 10199.4 47054.5
Gravitar 173.0 3351.4 4774 414.3 457.6 357.9 583.6
IceHockey -11.2 0.9 -2.4 -9.8 -9.9 -14.3 -2.1
Jamesbond 29.0 302.8 907.1 601.7 495.5 779.8 1747.1
Kangaroo 52.0 3035 14171 2364.6 2555.8 4596.7 14385.1
Krull 1598.0 2665.5 9618.2 7725.4 77475 10012.21 9537.0
KungFuMaster 258.5 | 22736.3 27576.5 17807.4 20992.5 23078.4 38074.1
MontezumaRevenge 0.0 4753.3 0.0 0.0 0.0 0.0 0.0
MsPacman 307.3 6951.6 2561.0 2273.3 2423.5 3191.7 2895.6
NameThisGame 2292.3 8049.0 11770.0 7748.2 7327.5 8368.1 10298.2
Pitfall -229.4 6463.7 0.0 -32.9 -30.7 - 0.0
Pong -20.7 14.6 20.9 19.6 20.0 21.0 21.0
PrivateEye 249 | 69571.3 100.0 419.3 114.1 1358.6 372.4
Qbert 163.9 | 13455.0 8348.2 10875.3 11790.2 15856.2 14593.0
Riverraid 1338.5 | 17118.0 8814.1 9710.4 10169.8 10487.3 9374.7
RoadRunner 11.5 7845.0 52575.7 27640.7 27872.2 49255.7 44341.0
Robotank 2.2 11.9 50.4 45.1 37.6 58.4 53.9
Seaquest 68.4 | 42054.7 5854.6 1690.5 2628.6 3103.8 16011.2
Spacelnvaders 148.0 1668.7 1281.8 1387.6 1553.8 1498.6 1562.6
StarGunner 664.0 | 10250.0 53624.7 49286.6 52920.0 53229.5 55475.0
Tennis -23.8 -8.3 0.0 -22.7 -23.7 -18.4 -1.0
TimePilot 3568.0 5229.2 6243.4 6417.7 5125.1 6931.1 6506.4
Tutankham 11.4 167.6 200.0 173.2 195.4 130.9 213.3
UpNDown 533.4 | 11693.2 22248.8 30443.6 24912.7 44386.7 33786.3
Venture 0.0 1187.5 12.5 5.3 26.5 1305.0 0.0
VideoPinball 16256.9 | 17667.9 104227.2 123425.4 44919.1 93309.6 443870.0
WizardOfWor 563.5 4756.5 13133.8 5219.0 4582.0 9582.0 6132.8
Zaxxon 32.5 9173.3 7222.7 6855.1 8252.8 6293.0 10250.0
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Appendix B

Appendix of Chapter 4

B.1 Notation
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Table B.1: Table of notation (Part 1: core and statistical notation)

Notation Description

S State space of size S.

A Action space of size A.

H Horizon length of one episode.

T Number of episodes.

rh(s,a) Reward of (s,a) at step h.

Pr(s'|s,a) Transition probability from (s,a) to s’ at step h.

H'g History up to step h in episode k.

N Number of statistical functionals.

Q7 (s,a) Q-function of a given policy 7 at step h.

Vi (s) V-function of a given policy 7 at step h.

Z7 (s, a) Random variable of the Q-function.

Z7(s) Random variable of the V-function.

Ny (s, a) Probability distribution of the @-function.

5 (s) Probability distribution of the V-function.

[Pr(+)] Expectation over transition, [Pp(-)] = Egp, (+).

(Br)# Pushforward of the distribution through B, (z) == r + x.

»(n) Statistical functional 22, (R)S —RS.

1N (1) N-collection of statistical functionals 2y, , (R)S —RN*S.

Py (R) Domain of the sketch 7.y.

Iy .y Image of the sketch ..

T Distributional Bellman operator, 77 := (B,)x[P7].

Ty Sketch Bellman operator w.r.t. ¢, Ty(n) =
P ((Br)[P1])-

Ty Empirical sketch Bellman operator w.r.t. v, %w(ﬁ) =

W (By) 4 [P1)-
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Table B.2: Table of notation (Part 2: functionals and dataset-related quantities)

Notation Description

) n-th element of an N-dimensional vector f.

1l Max norm of 5 X = R, |/l = maxex | £ ().
e l1-norm of max norms, | loc.t = SN max,ex |£¢)(@)].
FN Function class of N-dimensional embedding space.

2 Set of state—action pairs Z := {(s¢, at) zll.

D Dataset D = {(s¢, at, [dgl), . ,dﬁN)]) Ell

1£1% For f:8x A= R, |f|% =01 Y aez(fM(s,0)
11 For f: 8 x A= R, £l = 0l S22 (™ (s ar) -

w(")(FN, s, a)

di)?.
Width  function at (s,a),
maxy ge FN |f(n)(37 a) - g(n) (‘97 a)|

w(")(]-"N, s, a) =

f,’fﬁ Solution of moment least squares regression, f,’fﬁ =
arg min e || .
7 Target sketch of distribution 7, f == ¥1.n((By)#[Pr7]).
(FN)E Confidence region at step h, episode F, (FNk = {f €
FYNNS = BiglZy < BFY,0)})
N(FN ) Covering number of FV w.r.t. an e-ball.
dimg(FN,€) Eluder dimension of 7V w.r.t. .
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B.2 Pseudocode of SF-LSVI and Technical Remarks

Algorithm 5 Statistical Functional Least Squares Value Iteration (SF-LSVI)
Input: failure probability 6 € (0,1) and the number of episodes

1: for episode k =1,2,..., K do

2. Receive initial state s¥

3:  Initialize 1.5 (715, (1) + OV

4: forsteph=H,H—-1,...,1do
5

D {ST,,CLT,, : ( B, )uiif o (s7, )}
h hrs @ Y1 | ( T,L/)#nh+1( 1) (1) lk—1] x [H]
// Data collection
. rk i
6: fry < argmingezn || flpr
// Distribution estimation

bﬁ('a Y w(l)((]-“N)ﬁ, )

QZ() ) A min{(.ﬁiﬁ)(l)(" ) + b];:L(’ ’ 7H}
00 mp(-) = argmaxaea @} a) , V() = Qi (i ()

// Optimistic planning
0w (nf) < Q)
e e ()  (min{(7E) ™). 1))

ne(2:N|
2 (70) < Vi
o v (70) v (i CTEO))
14: for h=1,2,...,H do
15: Take action af « 7¥(sF)
16: Observe reward rf (s, af) and get next state sy ;.

Remark B.2.1. For an optimistic planning, we define the bonus function as the
width function b¥(s,a) = wi((FN)¥,s,a) where (FV)F denotes a confidence
region at step h, episode k. When F is a linear function class, the width function
can be evaluated by simply computing the maximal distance of weight vector. For
a general function class F, computing the width function requires to solve a set-
constrained optimization problem, which is known as NP-hard [33]. However, a
width function is computed simply for optimistic exploration, and approximation
errors are known to have a small effect on regret [1].
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B.3 Related Work and Discussion

B.3.1 Technical Clarifications on Linearity Assumption in Ex-
isting Results
Bellman Closedness and Linearity. Rowland et al. [81] proved that quantile
functional is not Bellman closed by providing a specific counterexample. However,
their discussion based on counterexamples can be generalized as it assumes that
the sketch Bellman operator for the quantile functional needs to be linear.
They consider an discounted MDP with initial state sg with single action
a, which transits to one of two terminal states si,se with equal probability.
Letting no reward at state sg, Unif([0,1]) at state s;, and Unif([1/K,1 +
1/K]) at state sz, the return distribution at state so is computed as mixture
%Unif([(),y]) + %Unif([’y/K,fy +v/K]). Then the ﬁ—quan‘cile at state sq is 2.
They proposed a counterexample where each quantile distribution of state si, s9

is represented as % Zle 02x—1 and % Zi{:l d2r+1 respectively, the ﬁ—quantﬂe
K K

of state s is gy, (% Zle 5%22_1) + 57(2?1)) = 23—]( However, this example
does not consider that the mixture of quantiles is not a quantile of the mixture
distribution (i.e., ¥g(An1 + (1 — A)n2) # AYg(m) + (1 — X)1g(n2)), due to the
nonlinearity of the quantile functional. Therefore, this does not present a valid

counterexample to prove that quantile functionals are not Bellman closed.

Bellman Optimizability and Linearity. Marthe et al. [63] proposed the
notion of Bellman optimizable statistical functional which redefine the Bellman
update by planning with respect to statistical functionals rather than expected
returns. They proved that Wi-continuous Bellman Optimizable statistical func-
tionals are characterized by exponential utilities 5 log Ez~,[exp(AZ)]. However,
their proof requires some technical clarification regarding the assumption that

such statistical functionals are linear.
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To illustrate, they define a statistical functional )y and consider two proba-
bility distributions ny = 1 (8 + 8,) and 7y = 6, where ¢(h) = f~1 (%( £(0) +
f(h))) Using the translation property, they lead 17 (n1) = ¢s(n2) to 3(f(z) +
f(x+h)) = f(x+¢(h)) for all z € R. However, this equality v ¢ (%(5x+5a:+h)) =
$(f(z) + f(z + h)) holds only if 1 is linear, which is not necessarily a valid

assumption for all statistical functionals.

B.3.2 Existence of Nonlinear Bellman Closed Sketch.

The previous two examples may not have considered the possibility that the
sketch Bellman operator might not necessarily be linear. However, some sta-
tistical functionals are Bellman-closed even if they are nonlinear, so it is open
question whether there is a nonlinear sketch Bellman operator that makes
the quantile functional Bellman-closed. In this section, we present examples
of maximum and minimum functionals that are Bellman-closed, despite being

nonlinear.

In a nutshell, consider the maximum of return distribution at state s, s9 is
v, + v/ K respectively. Beyond linearity, the maximum of return distribution

at state sg can be computed by taking the maximum of these values;

max(max(7(s1)), max(q(s2))) = max(y,7 +7/K) = 5 +7/K

which produces the desired result. This implies the existence of a nonlinear sketch
that is Bellman closed. More precisely, by defining maxy p(.|s o) and ming p(.|s.q)
as the maximum and minimum of the sampled sketch ¢ ((B,)x7(s")) with the
distribution P(:|s, a), we can derive the sketch Bellman operator for maximum

and minimum functionals as follows;
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T (Vnax(1(5))) = max e (B)7(s) = max (v + tmax (i()) )

s'~P(]s,a) s'~P(:|s,a)
T (i C1()) = i i (Br)gn(s)) = min (4 hin (7()) )

B.3.3 Non-existence of sketch Bellman operator for quantile
functional

In this section, we prove that quantile functional cannot be Bellman closed under
any additional sketch. First we introduce the definition of mixture-consistent,
which is the property that the sketch of a mixture can be computed using only

the sketch of the distribution of each component.

Definition B.3.1 (mixture-consistent). A sketch ¢ is mixture-consistent if for
any v € [0, 1] and any distributions 71,72 € &, (R), there exists a corresponding
function A, such that

(s + (1= v)m) = hy ($(m). (). v).

Next, we will provide some examples of determining whether a sketch is

mixture-consistent or not.

Example 1. Every moment or exponential polynomial functional is mixture-
consistent.
Proof. For any n € [N] and X € C,

EZNVm—l-(l—V)nz [Z" exp(\Z)]
=VEzup, [Z" exp(AZ)] + (1 = V)Egzn, [Z2" exp(A2)).

Example 2. Variance functional is not mixture-consistent.

Proof. Let v = % and Z,Y be the random variables where Z ~ %50 + %52 and
Y ~ 30k + 30k+2. Then, Var(Z) = Var(Y') = 1. While RHS is constant for any
k, LHS is not a constant for any k, i.e.,

L2
VarXN%(%50+%52)+%(%5k+%5k+2)(X) - Z(k +5).
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While variance functional is not mixture consistent by itself, it can be mixture

consistent with another statistical functional, the mean.

Example 3. Variance functional is mixture-consistent under mean functional.

Proof. Notice that mean functional is mixture-consistent. We need to show that
variance functional is mixture-consistent under mean functional.

VaTZ~un1+(1—u)n2 [Z]

=Ezeovm+-v)n [Z%] — (EZevm+(1—v)me [Z])?

= V]EZNTH [ZQ] +(1- V)EZNWQ [ZQ] - (VEZNW [Z] +(1- V)EZNHQ [Z])z

= v(Varzy [Z) + Bz [2])) + (1 = v) (Varzap[Z] + (Bzon[2])?)
— (VEzn, [Z] + (1 = v)Ezmn, [2])°

This means that to determine whether it is mixture-consistent or not, we
should check it on a per-sketch basis, rather than on a per-statistical functional

basis.

Example 4. Maximum and minimum functional are both mixture-consistent.

Proof.
max [Z] = max(max[Z], max[Z])
Zrvni+(1—v)n2 Z~m Z~ma
and
min [Z] = min(min [Z], min [Z])
Zr~vmi+(1—v)n2 Z~m Z~ma

Since maximum and minimum functionals are mixture consistent, we can

construct a nonlinear sketch bellman operator like the one in section B.3.2. This
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is possible because there is a nonlinear function hy, that ensures the sketch is
closed under mixture.

Before demonstrating that a quantile sketch cannot be mixture consistent
under any additional sketch, we will first illustrate with the example of a median

functional that is not mixture consistent.

Example 5. Median sketch is not mixture-consistent.

Proof. Let v = % and Z,Y be the random variables where Z ~ 0.25y + 0.861
and Y ~ 0.60g + 0.40y for some 0 < k < 1. Then ¢peq(Z) = 1 and peq(Y) = 0.
However,

medyy_ 2oy [X] = Yimea (0460 +0.25), +0.461) = k
which is dependent in k. n

Lemma B.3.2. Quantile sketch cannot be mizture-consistent, under any addi-
tional sketch.

Proof. For a given integer N > 0 and a quantile level « € (0,1), let v = % and
a random variable Y ~ py 00 + Dy 0y, + - F Dy Oy (0 < y1 < -+ <yny < 1)
where py, > « so that 1)4_quantile[Y] = 0. Consider another random variable
Z ~ Dzy00+p2, 01 where p,; < « so that ¥o—quantile[Z] = 1. Then the a—quantile
of the mixture X = % is

. 1 — 1
Ya—quantile[X | = yn, where n = min {n < N‘ 5 Z:Opyn, + 5Pz0 > a} .
n/=

Letting p., = 2a—) 11, Py,,, we can manipulate 14 quantile[X | to be any value
of yn. Hence, 1o quantile[X] is a function of all possible outcomes of Y.

If there exists a finite number of statistical functionals which make quantile
sketch mixture-consistent, then such sketch would uniquely determine the dis-
tribution for any N. This results in a contradiction that infinite-dimensional
distribution space can be represented by a finite number of statistical func-
tional. |

Lemma B.3.3. If a sketch v is Bellman closed, then it is mixture-consistent.
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Proof. Consider an MDP where initial state sg has no reward and transits to
two state s1, s3 with probability v, 1 —v and reward distribution 71, 772. Since ¥ is
Bellman closed, 1(7(sg)) is a function of ¢(7(s1)) and ¥ (7(s2)), (i.e., ¥(7(s0)) =

gu(1(7(s1)), ¥(71(s2))) for some gy). Since ¢ (71(s0)) = P(¥i(s1) + (1 —v)7(s2)),
it implies that 1 is mixture-consistent. |

Combining the results of Lemma B.3.2 and Lemma B.3.3, we prove that a
quantile sketch cannot be Bellman closed, no matter what additional sketches

are provided.
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B.4 Proof

Theorem (4.3.3). Quantile functional cannot be Bellman closed under any addi-
tional sketch.

Proof. See Lemma B.3.2 and Lemma B.3.3. |

Lemma (4.3.5). Let F; be a CDF of the probability distribution 7 € Z2(R)S.
Then a sketch is Bellman unbiased if and only if the sketch is a homogeneous
of degree k, i.e., there exists some vector-valued function h = h(xy,--- ,xg) :

X* = RN such that
/ / 21, xp)dFy () - dFy(ay).

Proof. (=) Consider an two-stage MDP with a single action a, and an initial
state sop which transits to one of terminal state {s1, - - - , sx } with transition kernel
P(-|s0,a). Assume that the reward r(so) = 0. Then 7(s9) = S 1, P (k)07 (sy)-
Note that s/, - - , s} are independent and identically distributed random variable
in distribution P(-|s, a).

Eyptisom |00 (0(Bgn(s)) - v (Bogish) )]
= 1y (B 4B r (o ()]
= Egp(|s0,0) [ (¢<5r(s'1)), b 71#(57«(5;6)))} = ¢(Es/~1@(-|so,a) [57‘(5’)])
— Eurb(isoa) | ( (1), a(s)) | = v (n(s0))
— / [ Bk () - (s = 0 (n(s0)).

by
Py

¢(<B >#Eslwp<.|sa>[-<s'>1)
/ / 1y TR)AEEB,) 4B a1 @)y A B 4B o ()
= //h(:zl +r, e Ty +T)d(ES/NHD(.‘Sﬂ)Fﬁ(s’)(.Tl)), e ,d(Es’NIP’(-|s,a)FF](s’)(xk))
= Eyup(|s,a) [/ - '/h(% + 1y xg + 1) dFy ey (1) - an(s’)(xk)]
= Eyp(|s,a) [¢<(Br)#[77(3/)]>]
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Theorem (4.3.6). The only finite statistical functionals that are Bellman unbiased
and closed are given by the collections of 1,...,19¥nN where its linear span
{Zgzo anty| an, € R ,VN} is equal to the set of exponential polynomial
functionals {n — Ez.,[Z'exp (A\Z2)]| I = 0,1,...,L, A € R}, where 1y is the
constant functional equal to 1. In discount setting, it is equal to the linear
span of the set of moment functionals {n — Ez.,[Z!]| { =0,1,..., L} for some
L <N.

Proof. Our proof is mainly based on the proof techniques of Rowland et al.
[81] and we describe in an extended form. Since their proof also considers
the discounted setting, we will define B, (z) = r + ya for discount factor

v € [0,1). By assumption of Bellman closedness, v, ((Bm)#ﬁ(s’ )) will be
written as g(r, vy, ¥1.n(7(s")) for some g. By assumption of Bellman unbiasedness
and Lemma 4.3.5, both 11.5(7(s")) and ), <(BT’A,)#77(S/)) are affine as functions
of the distribution 7(s’),

v (ai(s') + (1 —a)ia(s')

= Ez,cai (s)+(1—a)in(s) P18 (21, Z))]

= aBz, ) hin (21, Z)] + (1= Bz, gy [hin (21, -+, Z))]
aprn (71(s) + (1 — @)1 (72(5))

and

Un((Bra)eom (s)) + (1= a)ia(s)))

= EZiNO(ﬁl (") +(1—a)72(s") [hn(r + ’YZlv e+ ,YZk)]

=aByz g o |ha(r +72Z1, 1 +7Z)]

+ (1 - a)EZiNﬁg(s’)[h’n(r + ’7217 e, ’YZk)]

— ot ((Bra)ein () + (1= @) ((Br)iia(s))
Therefore, g(r,~,-) is also affine on the convex codomain of 17.5. Thus, we
have

N —

EZiNﬁ[(b’lbn (T+7217 T ,’f’+’72k)] = ao(T, 7)4_2 2 (’f‘, V)Eziwﬁ[(bwn/ (Zla T 7Zk)]

n/=1
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for some function ag.y : R x [0,1] — R. By taking 7(s") = d,, we obtain

N
¢¢n(7"+’71', ,T'—i-’yl‘) = ao(ﬁV) =+ Z an’(ﬁ’Y)(bwn/(x,"' ,1’).

n/=1

According to Engert [35], for any translation invariant finite-dimensional space
is spanned by a set of function of the form

{x alexp(\jz)| j € [J],0<1< L}

for some finite subset {A1,---, Ay} of C. Hence, each function z — ¢y, (x,--- , )
is expressed as linear combination of exponential polynomial functions. In
addition, the linear combination of ¢y, should be closed under composition
with for any discount factor v € [0,1], all A; should be zero. Hence, the linear
combination of ¢y, ,- - , ¢y, must be equal to the span of {z — do<i<L})
for some L € N.

|

Lemma (4.5.3). Consider a fixed k € [K] and a fixed h € [H]. Let 2} =

{(sF 7)) and D = { (sh af. wuew (87, )lsh 1))}, for amy

1:8 — 2([0, H]). Define ff . = argmingczn || ]2, . For any 77 and 6 € (0, 1),
b h _

U

there is an event £(7,d) such that conditioned on £ (77,9), with probability at
least 1 — 4, for any 7' : S — Z([0, H]) with ||[¢1.n(7") — ¥1:8(7)||cc,1 < 1/T or

SN e () = () |los < 1/T, we have

[ Fr ) = w1 (Br PRI, ) |

k
Zh

</ (NéH\/log(l/(S) + log N (FN, 1/T)>
for some constant ¢’ > 0.
Proof. Define the sketch of target f; : S x A — RV,

fals) = vin (B, ) 4lPil(, )

for all i € [N].
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For any f € F,
2 2
190 = it

Y T (k) — (B ()

n=1gT ahGZ}’j B

_ ( £570(s7,af) — wn((Br;)#ﬁ'(SﬁH)))Q
N

=3 (F™(shaf) — £97(s7,a))?

= k
1 s;,a;;EZhﬁ,

+20£ (57, a7) = S5 (57 @) (£ (ks 07) = o ((Brg) T (s741)) )
N
> |1f = frllZ=4 DI = £ lloo (H + 1] 28]
n=1
+ Z S [20 sk ap) = £k ai) (57 (ke ah) = vu((Brp)gi(s740)) ) |

k
Sh ahezh o

X7, ()

N
> S = frl—aNE+ D) =Y Y G|

n=1 s;,a;EZ}’: o

For the first inequality, we change the second term from 7’ to 77 which are the
e-covers. Notice that AC — BC' > —|AC — BC'| > —|(A—-B)C|—|(A—B)C'| >
—2|A — B||max(C,C")|.

(P (s a7) = 157 (5h, i) (157 (7 a) = o (B (5740) ))
— (FsTaf) = 77 (57 @) (A7 (67 aR) = v ((Brp)ei(s7,0)))
~2|[ £ (sp.af) — 157 (s ap)
W (shoan) = vu (Bl (5h4) )|,
> 2| £ (T af) — £ (s, af)||(H + 1)

xmax<

(st ap) = on((Bip)wi(shan) ) |)
For the second inequality, consider 77’ : S — Z2([0, H|) with Zﬁ[:l |on(7') —
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V()]s < 1/T. We have
147 = 15 = IE%X’ Y H [ ([B)(s,a)) — v ([P, a)) )" JH" !
’ n/=1

n
< E max
s/
n'=1

<1T.

Y (7(s)) = (7 (57))

Defining F¥ as the filtration induced by the sequence {(s7,,a},)},, W elk—1]x [H)Y
{(sh,ak), (sk,ab), ..., (sF,ak)}, notice that

|
N

= 3205 (s a7) = S5 (57 DU (57 07) = B[ ((Brp)ei(s740) ) [FR])
N

= 3208k, 0f) = 57 (7 a3 (55 07) = B iy [0 ( (B eii(5740) ) ])

N
= 3" 20/ (sF, af) — (T RN S (5Faf) — o (Brp) By, ~pntispap (5T)] )

— 1 sk DU (57 aR) = Y ((Brp)i(s7:1)))|

< mane {20757 (5, o) — i (B (570))) }Z\f (sF,ah) = 13" (k. aF)

N
200 +1) 3 |1 shyaf) = £ (57 ap)
n=1

In third equality, we emphasize that only Bellman unbiased sketch can derive
the martingale difference sequence which induce the concentration result. Since
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every moment functional is commutable with mixing operation, the transfor-
mation ¢y, in Definition 4.3.4 is identity for all n € [N]. Hence, we choose the
sketch as moment which already knows ¢y.

By Azuma-Hoeffding inequality,

N

D> XA 2
(rh)€lk—1]x[H] n=1
2

€
e
2(H + 1)) X nyelh—1]x[H] (25:1 £ — 1 )|>

2

(-,
( (2(H + 1) i (N Xnl [£0) fén)P))
(=3

< 2exp

| A

exp

2

] )
N + DPIf - fill%,

where the second inequality follows from the Cauchy-Schwartz inequality.

We set

(MFNJ/T>>

SN 120~ il o (M

With union bound for all f € C(FN,1/T), with probability at least 1 — 4,

> ZXZ (F™) ‘ /N2 (H + )|f_f,7||z},f\/1og</\f(F?1/T)>

(r,h)€[k—1]x [H] n=1

for some constant ¢’ > 0.

For all f € FV, there exists g € C(FN,1/T), such that ||f — gllec1 < 1/T
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or N 1FM — ¢ < 1/T for all n € [N],

DDA

(r,h)€[k—1]x[H] n=1

N
1
S‘ Z ZXh 1)| 25| Z
(1,h)€[k—1]x [H] n=1 n=1
I ATt N 1/T
ScN?(H—i—l)Hg—anZﬁ\/log( )+2N(H+1)
. N
<ENEH +D(If — fallze +1 \/1og Z UT)) +ON(H +1)
N
<ENFH+1)(1f ~ fyllze +2 \/log G 1/T)) FON(H + 1)

where the third inequality follows from,
N
If = gllZe < > £ (sh,aR) — g™ (s7, ap) P
n=1 (7,h)€[k—1]x [H]
< NT Ly?
<N7(7)
<1

Recall that ﬁin’ = argmingcr Hf”%lﬁ R We have ||f}]f’n,\|%ﬁ /_Hfﬁlu%ﬁ <0,
s M >N

which implies,

“k 2 . 12
0 > HfhﬁlHDﬁ’ﬁ/ Hf??’H’DZﬁ/

N
=Tk = fle 2> Y [T sk ah) = £ (ke ah))

n=1 (r,h)€[k—1]x[H]
(U577 07) = wn (Bl (57) ) )|
> \1fh g = f % — ENFH + D1y — Frlzg +2)

\/108(2/8) + log N'(FN, 1/T) — 6N (H +1).

Recall that if 22 — 2az — b < 0 holds for constant a,b > 0, then z <
a++Va%+b<c-a for some constant ¢ > 0.
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Hence,

1FEy — fllze < (N3 H\Jlog(1/8) + log N (FN,1/T))

for some constant ¢’ > 0. |

Lemma (4.5.4). Let (FN)F ={f € FN|||f - f;fﬁ\@},; < B(FN,6)}, where

B(FN,6) > ¢ - NH?(log(T/8) + log N (FN,1/T))

for some constant ¢ > 0. Then with probability at least 1 — /2, for all k, h €
[K] x [H], we have

Un((Bry( ) Paitha () € (F)

Proof. For all (k,h) € [K] x [H],

{0+ k6o, my) | FecE ynufol n=t
B mm{ﬂn)(-,-),H})) f eC(fN,1/T)}u{o} 2<n<N

is a (1/T)-cover of ¥1.n (), (-,-)) where

min{(fili—&—l)(l)('? ) + b2+1('7 )7H} n=1and h <H
v (Mhea () =  min{(fF, ) (), H} 2<n<Nandh<H,
oV h=H

i.e., there exists ¥1.x(n) € S such that ||[¢1.x(n) — ¢1:N(77;l§+1)Hoo,1 < 1/T. This
implies

S:= {%:N (n(-,argglgwl(n(wa)))) | Y1.n(n) € S}

is a (1/T)-cover of ¥y, (75, ;) with log(|S|) < log N'(FV,1/T).

For each 11.5(77) € S, let £(7,6/2|S|T") be the event defined in Lemma 4.5.3.
By union bound for all ¢1.5(7) € S, we have Pr[(y,. v mes €, §/2|S|T)] >
1-§/2T.

Let 11.n (i) € S such that |[¢1.n5(7) — Y18 (77 1) lsor < 1/T. Conditioned
on [, mes €(1,0/2[S|T") and by Lemma 4.5.3, we have

2

|70 = o (Bry ) lPah ], 0)) |

<d (NHQ(log(T/cS) +log N (FN, 1/T)))

k
Zh
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for some constant ¢ > 0.
By union bound for all (k,h) € [K] x [H], we have the target sketch

V1 ((Bry) a1 ], )) € (FN)f with probability 1 5/2. m

Lemma B.4.1. Let Qf(s,a) = min{H, f}f(s,a) + bk (s,a)} for some bonus
function bf (s, a) for all (s,a) € S x A. If b (s,a) > wD((FN)E s,a) , then with
probability at least 1 — 6/2,
Qh(s,a) < Qji(s,a) and Vi (s) < Vi (s)

for all (k,h) € [K] x [H], for all (s,a) € S x A.
Proof. We use induction on h from h = H to 1 to prove the statement. Let £
be the event that for (k, h) € [K] x [H], ¢1:N<(Brh(~,-))#[Phﬁ;’§+1](', )) S (]:N)z.
By Lemma 4.5.4, Pr|€| > 1 — §/2. In the rest of the proof, we condition on £.

When h = H + 1, the desired inequality holds as Q% (s,a) = V7, (s) =
Qlﬁl+1(s,a) = VI’}H(S) = 0. Now, assume that Qj_ (s,a) < QZ+1(s7a) and
Vi1 (s) < Vi (s) for some h € [H]. Then, for all (s,a) € S x A,

}
}

Qr(s,a) = min{H,rp(s,a) + [P,V 4](s, a)
< min{H,ry(s,a) + [}P’thk+1](s, a)
< min{H, fF(s,a) + w(FF, s, a)
= min{H, QF (s,a) — bl (s,a) + w'
< Qji(s,a)

1)(.7k,3 a)}

Lemma B.4.2 (Regret decomposition). With probability at least 1 — 6/4, we
have

Reg(K) < ZZ (205 (sF, af) + €5),
k=1 h=1
k k ok k k 7wk ok ; ;
where & = [Pr (Vi = Vir )]s, ak)— (Vh+1(5h+1) Vit 1(s41)) is a martingale
difference sequence with respect to the filtration Fh induced by the history H’,i

Proof. We condition on the above event £ in the rest of the proof. For all
(k,h) € [K] x [H], we have

< B(FN,6).

k
h

Hfh,n — YN (( ))#[Phﬁ}lﬂﬂ(‘a ))‘ 22
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Recall that (FN)E = {f € FN | |f = fF_ |2, < B(FN,6)} is the confidence
h hill zk

region. Since ¥1.x ((BTh(,7,))#[IP’hﬁﬁ+l](.’ )) € (FN)k, then by the definition of
width function w) (FF, s,a), for (k, h) € [K] x [H], we have

wO(Ff5.0) 2 |01 ((Bry ) 4 Baiihs)(5,0)) = () D (s,0)
= |r(s, @) + BaVial(s.a) = (Fp) V(s,0)|

Recall that Q; (-, -) < QF(-,-).

K
:ZQ'I{(SDGI) Ql ( 1,0@ )
k=

K
= QF(st, df) — (ri(st,at) + PLVFI(sF, af)) + (r1(st, af)
+ [Py V5] (st ) — Qﬂ (s}, af)

K
< 3w (FN) of, af) +5i (s, af) + [P (V) = V57)) (st )
k=

K
7k
< S wD(FVE, sF, ab)+bE (s8, a) + (V' (s5) = Vi7" (5)) + ¢

K H
<3O (@ (FNE, sk, af) ok (sh, af) + €f)
k=

K H
< 3OS (et (sh ) + €)
|

It remains to bound "5 S bE(sk af), for which we will exploit fact

that F has bounded eluder dimension.
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Lemma B.4.3. Ifbf(s,a) > wM ((FN)¥ s a) for all (s,a) € Sx A and k € [K]
where

(FNh =A{f € FNINIf = Fizll%e < BEFY,0)},
then

K H
ZZl{bk sf,ak) > e} < <4B(]:2N’6) + 1> dimp (F" ,¢)

€
k=1h=1

for some constant ¢ > 0.

Proof. We first want to show that for any sequence {(s1,a1),...,(sx,ax)} C
S x A, there exists j € [«] such that (s;,a;) is e-dependent on at least L =
[(k —1)/dimg(FN, €)] disjoint subsequences in {(s1,a1), ..., (sj_1,aj_1)} with
respect to FV. We demonstrate this by using the following procedure. Start with
L disjoint subsequences of {(s1,a1),...,(sj-1,aj-1)}, Bi,Ba, ..., B, which are
initially empty. For each j, if (s, a;) is e-dependent on every By, ..., By, we
achieve our goal so we stop the process. Else, we choose ¢ € [L] such that (s;,a;)
is e-independent on B; and update B; < B; U {(sj,a;)}, j + j + 1. Since every
element of B; is e-independent on its predecessors, |B;| cannot get bigger than
dimp(FY,€) at any point in this process. Therefore, the process stops at most
step j = Ldimg(FN,e) +1 < k.

Now we want to show that if for some j € [k] such that bf(s;,a;) > €,
then (s;,a;) is e-dependent on at most 43(FY,§)/€* disjoint subsequences in
{(s1,a1),...,(sj—1,aj—1)} with respect to FN. If bf(s;,a;) > € and (sj,a;) is
e-dependent on a subsequence of {(s],a}),...,(s;,a;)} € {(s1,a1),...,(sk,ax)},
it implies that there exists f,g € FV W1th \f — fhnsz < ﬁ(}"N ) and

lg — fhﬁHZ’ < B(FN,6) such that s (Stvat) — 4" )(Stvat) > €. By triangle
’ h
inequality, || f — g||22k < 4B(FN,5). On the other hand, if (s;,a;) is e-dependent
h
on L disjoint subsequences in {(s1,a1),..., (Sx,ax)}, then
BFY,0) 2 [1f = glZe= 1D = gVlZ = Le?

resulting in L < 4B8(FN,6)/€e%. Therefore, we have (k/dimg(FV, €)) —1 <
4B(FN,6)/e? which results in

k< <4ﬁ(§’6) + 1) dimp(FN, e
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Lemma B.4.4 (Refined version of Lemma 10 in Wang et al. [101]). Ifb¥(s,a) >
wD(FN)E s a) for all (s,a) € S x A and k € [K], then
K H
by (s, af) < Hdimg(FN,1/T).
k=1h=1

Proof. We first sort the sequence {b}(s, af)}x n)e(i]x[m) in a decreasing order
and denote it by {e1,...,er}(e; > ey > -+ > er). By Lemma B.4.3, for any
constant M > 0 and e; > 1/ MT, we have

t< (2D )i (7 ViTe) < (P01 1)

2
6t €

which implies

t —1/2 [AB(FN,9)
< — I S s
= <dimE(]-"N, ) 1) M
for ¢ > dimpg(FY,1/T). Since we have e; < H,

T T T
Y= ed{es <1/VMT}+ > ed{e, > 1/VMT,t < dimp(F",1/T)}
t=1 t=1 t=1

T
+) elfer > 1/VMT,t > dimp(FN,1/T)}

t=1

< \/IM + Hdimg(F N,l/T)
t ~1/2 [4B(FN,¥)
+ ) — —1 487 7,0)
dimp (FN,1/T)<t<T (dlmE(f s 1/T) ) M

1
< —— + Hdimg(FN,1/T
=0 B(F7,1/T)

T /2 N 1B(FN.5)

_ \/IM + Hdimp(FN,1/T) + /16 - dimp(FN,1/T) - T - B(FN, 8)/M

Taking M — oo,

K H
ZZbﬁ st af) < Hdimp(FN,1/T).
k=1h=1
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Theorem (4.5.5). Under Assumption 4.3.7, with probability at least 1—¢, SF-LSVI
achieves a regret bound of

Reg(K) < 2Hdimg(FN,1/T) 4+ 4H+/K H log(2/5).

Proof. Recall that fﬁ = [Ph(vth - Vh+1)](3h7ah) (Vh+1(3h+1) Vh+1(32+1))
is a martingale difference sequence where E[¢F|FF] = 0 and |¢f| < 2H. By
Azuma-Hoeffding’s inequality, with probability at least 1 — §/2,

K H
> ¢ < 4H/KHlog(2/6).

k=1h=1

Conditioning on the above event and Lemma B.4.4, we have

K H K H
Reg(K) <2) > bi(sh.ap) + > > &

k=1h=1 k=1h=1

< 2Hdimp(FN,1/T) + 4H\/K H log(2/)
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Appendix C

Appendix of Chapter 5

C.1 Main Proof

Lemma (5.2.2). (Structural Condition for a-optimality) A reward function and
a soft optimal @Q-function where 7*(+|s) is a-optimal have a one-to-one corre-
spondence with a state-dependent function 8 : S — R as follows,

Rox = {r+(s,a) = alogn*(als) + B(s) — vEp[B(s')], Ys,al @ >0,8:S — R}
Q7 . ={QT (s,a) = alog*(als) + B(s), Vs,a| « >0,8:S — R}

Proof. (m* is a-optimal <= QT (s,a) = alog7*(a|s) + B(s) for some (: S —
R.)

Remark that the policy 7* is a-optimal, if and only if there exists the optimal
soft @-function satisfies the following relation:

w*(als) = exp (+(Q7 (5,0) = VT (5)),
V™ (s) = alog /aE.A exp (éQ“* (s, a)da).

Since V™ is merely a partition function, letting X (s,a) = exp <éQ”*(s,a)),
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we can derive
X(s,a)
Joen X (s,a)da
< X(s,a) =d(s)n*(als) for some d: S — R

— Q" (s,a) = alogw*(als) 4+ B(s) for some §:S — R,

7 (als) =

where [ is defined as 3(s) = logd(s).

Using the soft Bellman equation, consider a reward function for any state-
dependent function 8 : S — R and substitute the expression of Q™ (s, a). Then,
we have:

r(s,a) == Q" (s,a) — YEp[V" (5')]
= a(log ™ (als) + B(s) — 7Ez[8(s)))

where 7" and P are given. By the definition of optimal soft Q-function, we
recursively substitute the soft Bellman equation and sum over timesteps:

Q" (5,0) = 7(5,0) + B, _pre [ 322 (s1,00) + 0¥ ()50 = 5,0 = a

>0
= alogm*(als) + B(s) — vEp[B(s1)]

+Erpee | Y27 (Blse) = 1Ep(B(se)])|s0 = 5,00 =

t>0
= alog7*(als) + B(s) — V*E__pe [B(s2)]

B, g | 307" (Blst) = 1E[B(st41)])|s0 = 5,00 = ]
t>1
= alogm*(a|s) + B(s).
|

Lemma (5.2.3). (Unique Fixed Point of Soft Bellman m-operator) Let 7* is
a-optimal. For a given policy 7 and Q-function Q7 € Q™ for any (s,a) € S x A,
define the Bellman m-operator 7,7 : Q™ — QT where

TrQA(s,0) = QT (5.0) = vEz o (K™ (1) = H7(|s)
B QT (5, 0')] — Ex[QA (5, ).

Then, 7,7 has a unique fixed point Q7.
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Proof. Consider (%, Q% € Q™. Then

sup | T Q7 (5. @) = T7Qf (s.a)| < sup

s,a

VEr [E[Q4 (5, 0')] ~ Ex[Q5(s, )|

QZ(Sla a/) - QE(S/> a/)

= ysup
s'a’
Hence, 7 is a 7y-contraction for any Q7 ,Q% € Q™. Since Q™ is a complete

metric space, by using Banach fixed point theorem, 7,7 has a unique fixed point.
Notice that QT and QT satisfies soft Bellman equation respectively, i.e.,

QT (s,a) = Ep |ru(5,0) + 1E QT (s'.a) + oM™ (151,
QX(s,0) = By |ru(s,0) +1E[Q1(',a!) +0H"([)]] ¥(s,0) € S x A
Then,
TrQi(s.a)
= QT (s.0) = 1Eg [a(H™ (1) = H™(|5)) + Exr[QT (',0)] — ExQT(s, )]
= QT (s,0) = 7Bz [0H™ (15) + Eae [QF' (s, 0")] = (aH7(15) + Eal Q1 (5, 0')]) |
= Ep|r«(s,a) + VEW[QI(5,7 a,) + O[Hﬂ(.|8/)]}
=Q%(s,a) V(s,a) €S x A.

Hence, Q7 is a unique fixed point of 7,. |
Theorem (5.2.4). If a policy 7* is a-optimal, then for any policy T,
szr* (57 CL) - Q:(Sv a‘) = O[DKL(WHW*; S, CL)

where the sequential forward KL divergence is defined as

Dicr (w5 s,) = Brapg, | Y 7' Drcnla(lsol 7' (s0)]-
>0

Here, PT , is the distribution of trajectories 7 = (so, ao, - ,si,a;,- -+ ) generated
by policy 7 and the transition P, starting at (sp,ag) = (s, a).

Proof. Let Qz(s,a) = QT (s,a) — ad w0 VE,pr |:DKL(7T("St)H7T*(-’8t)) S0 =
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s, a0 = a} for all (s,a) € S x A. Then
T Q%(s,a)
= Q7' (5,0) = 1Bz |a(H™ (1) = HT(|5) ) + Er [QF (s, )] — Ex[QI(s', )]
= Q7 (5:0) = 7z [a (17 (1) = HF(1)) + Brealog " () + 5(6)
—E, [Qf(s’, a) — aZ'ytIETNﬂM [Drcr(m(-|se)|l7*(-]s¢))] ‘31 =5,a; = a'H

t>0

= Q7 (s,a) —1Ep [5(5') — aH"(]s") — E«[QT (s',d')]

+oE, [Z’YtETN]PW [Dgcr(m(-|se)| |7 (-] s¢))] ‘31 =5, a1 = a’H

t>0

= Q' (5,a) — a7Ee | Dics (x (15|l ()]

—a > A E, s [DKL(W(-\SM\w*(-yst))‘so —s,a0 = a
t>1

= QI (5.) = & Y 1" Evnr | Drs(w(-[s0)| |7 (s0) |50 = 5,0 = a

t>0
= Q7 (s,0)

which implies that QT is a unique fixed point of 7;7. In Lemma 5.2.3, we observe
that 7,7 has a unique fixed point Q7. Hence,

Qi(s,0) = QT (s,0) =Y V' Erpr [DKL(W('|St)H7T*('\St)) S0 = s,a0 = a}

t>0

C.2 Further Theoretical Analysis & Discussion
C.2.1 Mathematical derivation of PPL framework

We recall the PPL model and objective:

P e )[C+ - (] ( ZR‘egﬂ'w St 7at Reg;; (St_’at_)>7

t>0

LppL(my; D) = —Ect ¢y p) ND[log0< ZReg% s a)) Regw (sy ,a; ))]

t>0
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where

—Regl. (st,a) = —(V (s¢) — QL (51, a¢)).

Here, a negative regret at (s¢, a¢) can be decomposed into two components:

~RegF- (se,00) = o log " (alsy) —~Brory, | Yo' DrwlrClso)][n(ls0)] )

increase likelihood 1>0

decrease sequential forward KL divergence
Proof. By the definition of regret,
— Regr (st ar)
= (V" (s1) — QU (51, ar))-
=~ (Ex[QF (st,0) — alog " (s0)]) + QT (51, ar) — aDcr (mll*; 50, a1)
= —Bfsi) + alogm* (ar|st) + Bbst) — aDg (x| |m*; s¢, ar)

= a(logﬂ*(at]st) — Dy (r)|7; st,at)>
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C.3 Variants of PPL and Baselines

BC: BC (Behavior Cloning) is the initial stage in RLHF, where the policy
is trained to maximize the likelihood of the demonstrated actions given the

corresponding states:

Lpc(my; D) = —E¢op [ > logmy(als)
=0

SFT: SFT (Supervised Fine Tuning) is trained to maximize the likelihood of

the demonstrated actions given the corresponding states in preferred segments:

Lspr(my; D) = —E¢+~D[Zlog%(aﬂ8j)

t>0

CPL: CPL [44] is our primary baseline, where the optimal advantage is defined

as the score function:

+
S
Scpr(my; ¢7) = ScpL(my; ¢7) Zlog clsi)

t>0 a’t |St )

The objective is to minimize the following loss function:
LopL(my; D) = —E(ct c-)op [10g o (Scpr(mp; ¢) — Scpr(my; C‘))}

A key issue raised in CPL is assigning high weights to OOD actions while
still maintaining the same optimal policy. This leads to extrapolation too much
into unseen states, ultimately degrading performance. To mitigate this, an

asymmetric regularizer is introduced:

Scprony (s €)= SepLoy (g ) = Scpr(my; ¢7) — AScpL(my; ¢7)

5 g Tl )

t>0 7T¢ at |8t )
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PPL: Based on policy deviation lemma in Theorem 5.2.4, PPL extends CPL
by incorporating entropy regularization and KL divergence-based constraints,
making preference learning more structured. The score function includes multiple

terms:
Sepr(my; ¢y mt) — Sppr(my; ¢, m0)

_Z [10 at |3t)

at |s¢ )

L Z ( Dir(nm (‘|3;r+l)"7rw(“3:r+z)) + DKL(W_("S;HN’77111('|8t_+l)))] ;
and the objective function is:
LppL(my; D) = —E(¢+ ¢-)p [logU(SPPL(ﬂ'w; ¢*) — Sppr(my; Cf))}
The score function of PPL with the same asymmetric regularizer as CPL is
given by:
SepLoy) (s ¢ ™) = SpprLoy (i ¢, )

= Sppr(my; ¢, 7)) — ASppL(my; (7, m7)

_Z[ Wwatlst)

t>0 7T¢ at |St )
L
Z (= Diesr*ClsflimaClsf)) + Ame(-\s;l)uw-rs;l)))] ,
PPL-deterministic: If policy-label is unknown, we apply deterministic pseudo-

labels by assuming that each segment was generated by a deterministic policy

that executed the observed action.

SppL-a(my; ¢) — Sppr-a(my; Cf)

_Z log at ‘St L Zl t+l|5t+l)

t>0 at |s¢) L/J( t+l|5t+l)
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C.4 Implementation Details

C.4.1 Hyperparameter Setting

Table C.1: Hyperparameter settings for offline implementation.

Hyperparameter State

Total Training Steps 500k
Pre-training Steps (except P-IQL) 200k

Batch Size 96

Segment Size 64

Fixed log std -1.5

Actor Dropout 0.0 (0.25 for CPL reproduce)
Architecture [256, 256] MLP Gaussian

Table C.2: Hyperparameters for online implementation

Hyperparameter State
Total Environment Steps 1m
Segment Size 32
Fixed log std -1.0
Query Frequency(steps) 1000
Policy update Frequency(steps) 1000
Episode Length 250
Learning rates 3e-4
Temperature a 0.1
Asymmetric regularizer A 1.0
BC weights 0

0% 1
Actor Dropout 0.0
Architecture [256, 256] MLP Gaussian
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Table C.3: Hyperparameters for PPL, CPL, SFT, and P-IQL

Hyperparameter PPL CPL SFT P-IQL
Learning rates le-4 le-4 le-4 1le4
Temperature « 0.1 0.1 0.1 0.1
Asymmetric regularizer A 0.5 0.5 - -
BC weights 0 0 0 0

v 1 1 1 1

Number of Parameters 76k 76k 76k 859k

C.4.2 MetaWorld Benchmark

Our experiments were conducted on six MetaWorld environments: Bin-Picking,
Button-Press, Door-Open, Drawer-Open, Plate-Slide, and Sweep-Into.

Each task requires precise control of a robotic arm to interact with objects
in a structured environment. The diverse task set includes object relocation,
pushing, pulling, and fine-grained manipulation, making it a suitable testbed
for reinforcement learning from preference-based feedback.

Each environment is designed with a handcrafted reward function tailored
to its objective. Instead of human annotations, we trained a critic using SAC
to assign labels. During our experiments, we observed that return did not
always align well with success rates. In case of Door-0Open, despite achieving
the highest return, PPL exhibited a relatively low success rate. This implies that
the environment allows reward exploitation due to the imprecise design of the

reward function.
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Bin Picking Button Press Door Open

4 4

Drawer Open Plate Slide Sweep Into

y

Figure C.1: Visualization of the MetaWorld Benchmark Tasks.

C.4.3 Reproducibility Check

For a fair comparison, we first verified the reproducibility of CPL using the
Metaworld State Dense and State Sparse datasets provided by Hejna et al.
[44] and evaluated the performance of PPL on these datasets. We used the official
CPL implementation (https://github.com/jhejna/cpl) without modifications
and ensured reproducibility by fixing the random seed ([123,231,312,321]). The
figure below presents the PPL performance alongside the reproduced CPL results.
The horizontal dashed line represents the scores reported in CPL, confirming
the reproducibility of the algorithm. The vertical dashed line indicates the point
where behavior cloning (BC) training stops.

In all environments except Plate-Slide-v2, the reproduced CPL perfor-
mance closely matches the reported values, with deviations attributed to seed
variability. Across the provided datasets, PPL exhibits comparable overall per-

formance to CPL.
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Table C.4: Success rates of all methods on six tasks from the MetaWorld across
different datasets from Hejna et al. [44]. Each score is reported as the highest
average performance across four seeds over a 200-episode evaluation window.

Bin Picking Button Press Door Open Drawer Open Plate Slide Sweep Into

Stat CPL(Reported) 80.0 £ 2.5 24.5 £ 2.1 80.0 £ 6.8 83.6 £ 1.6 61.1 £30 704 +3.0
9.5k ]%eense CPL(Reproduced)  76.0 £ 4.1 249 + 4.7 75.5 £ 6.0 87.6 £28 453 +104 745+ 3.4
PPL 77T £ 2.6 302+ 7.8 76.7 £ 7.1 84.2 + 24 41.7+£32 79.2+5.5

Stat CPL(Reported) 83.2+35 298 +£1.8 779+ 9.3 79.1 £ 5.0 56.4+39 812+1.6
20k S(r})zil'se CPL(Reproduced) 69.1 +21.4 255 + 5.3 4.4+ 35 80.9 £ 45 411 +£4.9 80.5+ 2.8
PPL 83.0 £ 3.7 254 £ 2.8 722 £ 1.7 79.0 £ 4.0 429 +1.6 76.0+2.0
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Figure C.2: Reproducibility check on State Dense dataset
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C.4.4 Offline dataset generation and its distribution

We construct a heterogeneous dataset by incorporating various policies, following
the dataset generation method used in Hejna et al. [44]. Specifically, we load
suboptimal SAC checkpoints with success rates of 20% and 50% using the
same approach. During rollouts, we introduce Gaussian noise with a standard
deviation of 0.3 and rolling out 20,000 episodes, each lasting 250 steps, using
their suboptimal soft actor-critic (SAC) [41] checkpoints, which achieved an
approximate 50% success rate.

While following this data generation procedure, we found a step in the
reference code where transitions following a success signal were explicitly trun-
cated. This truncation was intended to prevent segments from being overly
dominated by successful transitions. However, we opted to retain the raw data
without truncation. As a result, the distribution of our 50% success rate dataset
differs from that of Hejna et al. [44]. To highlight this difference, we provide a
visualization of the data distribution across environments.

For our experiments, we generated the following four datasets:
e Homogeneous Dense

e Homogeneous Sparse

e Hetereogeneous Dense

e Heterogeneous Sparse

In the additional experimental setting, we kept all aspects—such as the hy-
perparameters of all algorithms, the SAC critic, and the label generation
method—identical to the original setup, modifying only the dataset. Inter-
estingly, CPL exhibited significant performance variations depending on the

dataset, whereas PPL demonstrated robust performance across diverse datasets.
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The robustness of PPL’s performance can be attributed to its ability to adjust the

magnitude of feedback for diverse policies and accurately reflect the likelihood

of each segment.
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Figure C.4: Comparison of return distributions across environments for different
dataset configurations. The histograms illustrate the distribution of the partial
returns for segments with 20% and 50% success rates generated using our method
(red and blue) and the 50% success rate dataset from Hejna et al. [44] (gray).

157



C.4.5 Online Implementation

In the online setting, we use a Gaussian actor with a fixed standard deviation to
maintain consistency with the offline setting. The model is trained from scratch
without any pretraining. The online learning process consists of three phases.
First, rollouts are conducted in the environment for a fixed number of steps to
generate trajectory data. Next, preference queries and labels are constructed
from segments of these trajectories. Finally, the policy is updated using the

generated preference query data.

During the rollout phase, actions are sampled from a stochastic policy
without additional exploration strategies. In the query generation phase, two
policies are selected for comparison, with one always being the most recent
and the other randomly chosen from the last 25 policies. Segments from the
most recent policy are first over-sampled at three times the required number,
then ranked based on their regret scores relative to the current policy. The
top-ranked segments are retained, while segments from the other policy are
sampled uniformly at random. Preference labels are assigned according to the

method described in Appendix D.2 of Hejna et al. [44].

In the policy update phase, stochastic gradient updates are applied over
a fixed number of epochs using all preference query data collected up to that
point. Unlike reward-based preference learning methods, which predominantly
generate preference queries early in training and subsequently optimize policies
using a learned reward function and an RL algorithm, the online PPL algorithm
continuously collects preference queries throughout the entire training process.

This ensures sustained policy improvement over time.

To reproduce the online baseline PEBBLE algorithm, we utilized the official

B-Pref implementation (https://github.com/rll-research/BPref) and ad-
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hered to the hyperparameter settings and random seeds reported in the original
paper. Our online experiments were performed on five tasks from the Meta-
World benchmark: Button Press, Door Open, Drawer Open, Plate Slide,
and Sweep Into. All hyperparameters were kept consistent across tasks, except
for the total number of preference queries, which was set to match the values

specified for each environment in the PEBBLE paper.
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C.5 Experimental Results on Homogeneous/ Hetero-
geneous Datasets (Section 5.3.2)

C.5.1 Homogeneous Dense Offline Dataset
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Figure C.5: Performance comparison of different methods on the Homogeneous
Dense dataset across six MetaWorld tasks. The top row shows the success rate
over training iterations, while the bottom row presents the corresponding return
values.
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C.5.2 Homogeneous Sparse Offline Dataset
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Figure C.6: Performance comparison of different methods on the Homogeneous

Sparse dataset across six MetaWorld tasks.
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C.5.3 Heterogeneous Dense Offline Dataset
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Figure C.7: Performance comparison of different methods on the Heterogeneous
Dense dataset across six MetaWorld tasks.
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C.5.4 Heterogeneous Sparse Offline Dataset
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Figure C.8: Performance comparison of different methods on the Heterogeneous
Sparse dataset across six MetaWorld tasks.
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C.6 Comparison with Deterministic Pseudo-labels (Sec-
tion 5.3.3)

C.6.1 Homogeneous Dense Offline Dataset
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Figure C.9: Comparison of PPL and PPL-deterministic on the Homogeneous
Dense Offline Dataset.
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C.6.2 Heterogeneous Dense Offline Dataset
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Figure C.10: Comparison of PPL and PPL-deterministic on the Heterogeneous
Dense Offline Dataset.
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C.7 Experimental Results on Online Implementation
(Section 5.3.4)

C.7.1 Online Learning Curves
We evaluated the performance of PPL in an online setting across five MetaWorld

tasks. The number of preference queries (#Pref) varied for each environment

based on the quantities used in PEBBLE, and these differences are illustrated in

each plot.
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C.7.2 Ablation on Preference Query Count

We evaluate the performance of PPL over iterations with different numbers of
preference queries (#Pref). Overall, increasing the number of preference queries
leads to improved performance, demonstrating the benefit of richer preference

feedback in online learning.
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Figure C.12: Effect of preference query count in online learning.
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C.7.3 Ablation on Rollout Length

We analyze the impact of different rollout lengths L on the performance of PPL
in an online RLHF setting across five MetaWorld tasks. Each plot compares the

success rate over training iterations for three rollout lengths: L = {5, 10, 20}.
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